Perturbations of ultralight vector field dark matter

被引:24
|
作者
Cembranos, J. A. R. [1 ]
Maroto, A. L. [1 ]
Nunez Jareno, S. J. [1 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor 1, E-28040 Madrid, Spain
来源
关键词
Cosmology of Theories beyond the SM; Classical Theories of Gravity; TIME PHASE-TRANSITION; SCALAR-FIELD; GRAVITATIONAL-WAVES; GALACTIC HALO; GALAXIES; QUINTESSENCE; CORES;
D O I
10.1007/JHEP02(2017)064
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fi elds. Very much as for scalar fi eld dark matter, we fi nd two di ff erent regimes in the evolution: for modes with k(2) << H ma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k(2) >> H ma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c(s)(2) similar or equal to k(2)/m(2)a(2). This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector fi eld implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More speci fi cally, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector fi eld perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we fi nd that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Phi - psi)/Phi similar to c(s)(2). Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Phi similar to c(s)(2). This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.
引用
下载
收藏
页数:28
相关论文
共 50 条
  • [31] Ultralight Thomas-Fermi dark matter
    Pal, K.
    Sales, L., V
    Wudka, J.
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [32] Bounds on ultralight dark matter from NANOGrav
    Aghaie, Mohammad
    Armando, Giovanni
    Dondarini, Alessandro
    Panci, Paolo
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [33] Simulations of multifield ultralight axionlike dark matter
    Glennon, Noah
    Musoke, Nathan
    Prescod-Weinstein, Chanda
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [34] Cosmic Braneworld and Ultralight Bosonic Dark Matter
    Rodriguez-Montoya, Ivan
    Garcia-Aspeitia, Miguel A.
    Magana, Juan
    Matos, Tonatiuh
    RECENT DEVELOPMENTS IN GRAVITATION AND BEC'S PHENOMENOLOGY, 2010, 1318 : 224 - +
  • [35] Ultralight millicharged dark matter via misalignment
    Zachary Bogorad
    Natalia Toro
    Journal of High Energy Physics, 2022
  • [36] Cosmological simulations of mixed ultralight dark matter
    Lague, Alex
    Schwabe, Bodo
    Hlozek, Renee
    Marsh, David J. E.
    Rogers, Keir K.
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [37] Dynamical friction from ultralight dark matter
    Wang, Yourong
    Easther, Richard
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [38] Ultralight Dark Matter Resonates with Binary Pulsars
    Blas, Diego
    Nacir, Diana Lopez
    Sibiryakov, Sergey
    PHYSICAL REVIEW LETTERS, 2017, 118 (26)
  • [39] Stueckelberg Bosons as ultralight dark matter candidate
    Govindarajan, T. R.
    Kalyanapuram, Nikhil
    MODERN PHYSICS LETTERS A, 2019, 34 (40)
  • [40] Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release
    Wu, Yu-Mei
    Chen, Zu-Cheng
    Huang, Qing-Guo
    Zhu, Xingjiang
    Bhat, N. D. Ramesh
    Feng, Yi
    Hobbs, George
    Manchester, Richard N.
    Russell, Christopher J.
    Shannon, R. M.
    PHYSICAL REVIEW D, 2022, 106 (08)