Predicting cardiovascular events with deep learning approach in the context of the internet of things

被引:28
|
作者
Dami, Sina [1 ]
Yahaghizadeh, Mahtab [1 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, West Tehran Branch, Tehran, Iran
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 13期
关键词
Cardiovascular event prediction; LSTM neural network; Deep belief network; Internet of things; Wearable heart rate monitoring sensors;
D O I
10.1007/s00521-020-05542-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, one of the causes leading to death in all over the world is the occurrence of arterial and cardiovascular events, which results in heart failure and premature deaths occurring in the form of myocardial infarction, stroke, and fainting. Therefore, it is essential to inform people before disasters occurring to prevent and warn of abnormal conditions. In this paper, a deep learning approach was used to predict arterial events over the course of a few weeks/months prior to the event using a 5-min electrocardiogram (ECG) recording and extracting time-frequency features of ECG signals. Considering the possibility of learning long-term dependencies to identify and prevent these events as quickly as possible, the Long Short-Term Memory (LSTM) neural network was used. A Deep Belief Network (DBN) was also used to represent and select more efficient and effective features of the recorded dataset. This approach is briefly called LSTM-DBN. Four publicly available datasets in the field of health care were used to evaluate the proposed approach. These data were collected from wearable heart rate monitoring sensors along with demographic features in the context of the Internet of Things. The prediction results of the proposed LSTM-DBN were compared with other deep learning approaches (simple RNN, GRU, CNN and Ensemble), and traditional classification approaches (MLP, SVM, Logistic Regression and Random Forest). In addition, DBN performance was compared with other methods of feature selection and representation such as PCA and AutoEncoder. Experimental results showed that the proposed LSTM-DBN (88.42% mean accuracy) had significantly better performance in comparison with all other deep learning approaches and traditional classifications.
引用
下载
收藏
页码:7979 / 7996
页数:18
相关论文
共 50 条
  • [31] An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment
    Alzahrani, Abdulrahman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (02): : 2331 - 2349
  • [33] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [34] Editorial: Deep Learning and Edge Computing for Internet of Things
    Wan, Shaohua
    Wu, Yirui
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [35] Deep Learning Framework For Internet Of Things For People With Disabilities
    Shah, Syed Jawad Hussain
    Albishri, Ahmed Awad
    Lee, Yugyung
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3609 - 3614
  • [36] DeepThink IoT: The Strength of Deep Learning in Internet of Things
    Thakur, Divyansh
    Saini, Jaspal Kaur
    Srinivasan, Srikant
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14663 - 14730
  • [37] Toward Deep Transfer Learning in Industrial Internet of Things
    Liu, Xing
    Yu, Wei
    Liang, Fan
    Griffith, David
    Golmie, Nada
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (15) : 12163 - 12175
  • [38] Deep Reinforcement Learning for Internet of Things: A Comprehensive Survey
    Chen, Wuhui
    Qiu, Xiaoyu
    Cai, Ting
    Dai, Hong-Ning
    Zheng, Zibin
    Zhang, Yan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03): : 1659 - 1692
  • [39] Fog-Embedded Deep Learning for the Internet of Things
    Lyu, Lingjuan
    Bezdek, James C.
    He, Xuanli
    Jin, Jiong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (07) : 4206 - 4215
  • [40] On deep reinforcement learning security for Industrial Internet of Things
    Liu, Xing
    Yu, Wei
    Liang, Fan
    Griffith, David
    Golmie, Nada
    COMPUTER COMMUNICATIONS, 2021, 168 : 20 - 32