Non-Abelian vortices with product moduli

被引:10
|
作者
Dorigoni, Daniele [1 ]
Konishi, Kenichi [1 ,2 ]
Ohashi, Keisuke [3 ]
机构
[1] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy
[3] Univ Cambridge, DAMTP, Cambridge, England
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 04期
基金
日本学术振兴会;
关键词
SYMMETRY-BREAKING; MONOPOLES; DUALITY; VACUA; CONFINEMENT; SPACE;
D O I
10.1103/PhysRevD.79.045011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Vortices of a new type, carrying non-Abelian flux moduli CP(n-1)xCP(r-1), are found in the context of softly broken N=2 supersymmetric quantum chromodynamics. By tuning the bare quark masses appropriately, we identify the vacuum in which the underlying SU(N) gauge group is partially broken to SU(n)xSU(r)xU(1)/Z(K), where K is the least common multiple of (n,r), and with N-f(su(n))=n and N-f(su(r))=r flavors of light quark multiplets. At much lower energies, the gauge group is broken completely by the squark vacuum expectation values, and vortices develop which carry non-Abelian flux moduli CP(n-1)xCP(r-1). For n > r, at the length scale at which the SU(n) fluctuations become strongly coupled and Abelianize, the vortex still carries weakly fluctuating SU(r) flux moduli. We discuss the possibility that these vortices are related to the light non-Abelian monopoles found earlier in the fully quantum-mechanical treatment of 4D supersymmetric quantum chromodynamics.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Geometry and energy of non-Abelian vortices
    Manton, Nicholas S.
    Rink, Norman A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [22] The holomorphic tension of non-Abelian vortices
    Bolognesi, S
    [J]. NUCLEAR PHYSICS B, 2005, 719 (1-2) : 67 - 76
  • [23] Group theory of non-abelian vortices
    Eto, Minoru
    Fujimori, Toshiaki
    Gudnason, Sven Bjarke
    Jiang, Yunguo
    Konishi, Kenichi
    Nitta, Muneto
    Ohashi, Keisuke
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11):
  • [24] INTERACTIONS AND EXCITATIONS OF NON-ABELIAN VORTICES
    ALFORD, MG
    BENSON, K
    COLEMAN, S
    MARCHRUSSELL, J
    WILCZEK, F
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (14) : 1632 - 1635
  • [25] Static Interactions of non-Abelian Vortices
    Eto, Minoru
    [J]. PROCEEDINGS OF THE CONFERENCE ON CONTINUOUS ADVANCES IN QCD 2008, 2008, : 279 - 290
  • [26] The moduli space of non-abelian vortices in Yang-Mills-Chern-Simons-Higgs theory
    Gudnason, Sven Bjarke
    Eto, Minoru
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (42)
  • [27] Domain walls with non-Abelian orientational moduli
    Eto, Minoru
    Fujimori, Toshiaki
    Nitta, Muneto
    Ohashi, Keisuke
    Sakai, Norisuke
    [J]. FIRST MEDITERRANEAN CONFERENCE ON CLASSICAL AND QUANTUM GRAVITY (MCCQG 2009), 2010, 222
  • [28] More on the Abrikosov strings with non-Abelian moduli
    Shifman, M.
    Tallarita, Gianni
    Yung, Alexei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (10):
  • [29] Non-Abelian vortices on a cylinder: Duality between vortices and walls
    Eto, M
    Fujimori, T
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Ohta, K
    Sakai, N
    [J]. PHYSICAL REVIEW D, 2006, 73 (08):
  • [30] Non-abelian Vortices: Existence, Uniqueness and Asymptotics
    Tarantello, Gabriella
    [J]. MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) : 343 - 356