Caputo-Fabrizio fractional differential equations with non instantaneous impulses

被引:16
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, Saida 20000, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
关键词
Ractional differential equation; Caputo– Fabrizio integral of fractional order; Fabrizio fractional derivative; Not instantaneous impulse; Measure of noncompactness; Fixed point; STABILITY; MODEL;
D O I
10.1007/s12215-020-00591-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with some existence results based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness for Cauchy problem of Caputo-Fabrizio fractional differential equations with not instantaneous impulses. Some illustrative examples are presented in the last section.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条
  • [1] Caputo-Fabrizio fractional differential equations with instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    [J]. AIMS MATHEMATICS, 2021, 6 (03): : 2932 - 2946
  • [2] Caputo–Fabrizio fractional differential equations with non instantaneous impulses
    Saïd Abbas
    Mouffak Benchohra
    Juan J. Nieto
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 131 - 144
  • [3] Caputo-Fabrizio type fractional differential equations with non-instantaneous impulses: Existence and stability results
    Benzahi, Ahlem
    Abada, Nadjet
    Arar, Nouria
    Idris, Sahar Ahmed
    Abdo, Mohammed S.
    Shatanawi, Wasfi
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 186 - 200
  • [4] Non-Instantaneous Impulses in Caputo Fractional Differential Equations
    Ravi Agarwal
    Snezhana Hristova
    Donal O’Regan
    [J]. Fractional Calculus and Applied Analysis, 2017, 20 : 595 - 622
  • [5] NON-INSTANTANEOUS IMPULSES IN CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 595 - 622
  • [6] Implicit Caputo-Fabrizio fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 727 - 742
  • [7] A FINITE DIFFERENCE SCHEME FOR CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATIONS
    Guo, Xu
    Li, Yutian
    Zeng, Tieyong
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (02) : 195 - 211
  • [8] On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator
    Jassim, Hassan Kamil
    Hussain, Mohammed Abed Shareef
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (01): : 58 - 66
  • [9] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [10] Pell polynomial solution of the fractional differential equations in the Caputo-Fabrizio sense
    Yaslan, H. Cerdik
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,