Caputo-Fabrizio fractional differential equations with instantaneous impulses

被引:16
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Nieto, Juan J. [3 ]
机构
[1] Univ Saida Dr Moulay Tahar, Dept Math, POB 138, En Nasr 20000, Saida, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Inst Matemat, Santiago De Compostela, Spain
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Fractional differential equation; Caputo-Fabrizio integral of fractional order; Caputo-Fabrizio fractional derivative; instantaneous impulse; measure of noncompactness; fixed point;
D O I
10.3934/math.2021177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subjuct of this paper is the existence of solutions for a class of Caputo-Fabrizio fractional differential equations with instantaneous impulses. Our results are based on Schauder's and Monch's fixed point theorems and the technique of the measure of noncompactness. Two illustrative examples are the subject of the last section.
引用
收藏
页码:2932 / 2946
页数:15
相关论文
共 50 条
  • [1] Caputo-Fabrizio fractional differential equations with non instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 131 - 144
  • [2] Caputo–Fabrizio fractional differential equations with non instantaneous impulses
    Saïd Abbas
    Mouffak Benchohra
    Juan J. Nieto
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 131 - 144
  • [3] Caputo-Fabrizio type fractional differential equations with non-instantaneous impulses: Existence and stability results
    Benzahi, Ahlem
    Abada, Nadjet
    Arar, Nouria
    Idris, Sahar Ahmed
    Abdo, Mohammed S.
    Shatanawi, Wasfi
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 186 - 200
  • [4] Implicit Caputo-Fabrizio fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 727 - 742
  • [5] A FINITE DIFFERENCE SCHEME FOR CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATIONS
    Guo, Xu
    Li, Yutian
    Zeng, Tieyong
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (02) : 195 - 211
  • [6] On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator
    Jassim, Hassan Kamil
    Hussain, Mohammed Abed Shareef
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (01): : 58 - 66
  • [7] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [8] Pell polynomial solution of the fractional differential equations in the Caputo-Fabrizio sense
    Yaslan, H. Cerdik
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [9] Random Caputo-Fabrizio fractional differential inclusions
    Abbas, Said
    Benchohra, Mouffak
    Henderson, Johnny
    [J]. MATHEMATICAL MODELLING AND CONTROL, 2021, 1 (02): : 102 - 111
  • [10] The differential transform of the Caputo-Fabrizio fractional derivative
    Alahmad, Rami
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 137 - 145