Physically Based Model-Predictive Control for SOFC Stacks and Systems

被引:3
|
作者
Vincent, Tyrone L. [1 ]
Sanandaji, Borhan [1 ]
Colclasure, Andrew M. [1 ]
Zhu, Huayang [1 ]
Kee, Robert J. [1 ]
机构
[1] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA
来源
SOLID OXIDE FUEL CELLS 11 (SOFC-XI) | 2009年 / 25卷 / 02期
关键词
OXIDE FUEL-CELLS; PERFORMANCE;
D O I
10.1149/1.3205646
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper discusses model-predictive controllers (MPC) that can incorporate physical knowledge of fuel-cell behavior into real-time multiple-input-multiple-output (MIMO) process-control strategies. The controller development begins with a high-fidelity, transient, physical model that represents the physical and chemical processes responsible for fuel-cell function. However, because such large nonlinear models cannot be solved in real time as part of the controller logic, linear reduced-order state-space models are required. The model reduction is accomplished via a process called system identification. The controller is designed to interpret sensors in the context of the reduced-order model and determine optimal actuation sequences that cause the system to follow a desired output trajectory. The process is demonstrated for a tubular SOFC stack that could be used for auxiliary-power unit (APU) applications.
引用
收藏
页码:1175 / 1184
页数:10
相关论文
共 50 条
  • [21] Grouped neural network model-predictive control
    Ou, J
    Rhinehart, RR
    [J]. CONTROL ENGINEERING PRACTICE, 2003, 11 (07) : 723 - 732
  • [22] Model-predictive Control of a Cement Rotary Kiln
    Schumacher, M.
    Weng, M.
    Kuessel, U.
    Abel, D.
    Burgwinkel, D.
    Jovicic, N.
    Mueller-Pfeiffer, M.
    [J]. 25. DEUTSCHER FLAMMENTAG: VERBRENNUNG UND FEUERUNG, 2011, 2119 : 413 - 419
  • [23] Filter-Aware Model-Predictive Control
    Kayalibay, Baris
    Mirchev, Atanas
    Agha, Ahmed
    van der Smagt, Patrick
    Bayer, Justin
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [24] Model-predictive control of a compliant hydraulic system
    Sadowska, Anna
    Steenson, Leo
    Hedlund, Magnus
    [J]. 2018 UKACC 12TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2018, : 388 - 388
  • [25] MODEL-PREDICTIVE CONTROL OF PROCESSES WITH INPUT MULTIPLICITIES
    SISTU, PB
    BEQUETTE, BW
    [J]. CHEMICAL ENGINEERING SCIENCE, 1995, 50 (06) : 921 - 936
  • [26] Modulated Model-Predictive Control With Optimized Overmodulation
    Garcia, Cristian F.
    Silva, Cesar A.
    Rodriguez, Jose R.
    Zanchetta, Pericle
    Odhano, Shafiq A.
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2019, 7 (01) : 404 - 413
  • [27] MULTIRATE MULTIVARIABLE MODEL-PREDICTIVE CONTROL DESIGN
    OHSHIMA, M
    KANO, M
    HASHIMOTO, I
    OHNO, H
    [J]. KAGAKU KOGAKU RONBUNSHU, 1994, 20 (02) : 240 - 247
  • [28] MODEL-PREDICTIVE CONTROL OF A COMBINED SEWER SYSTEM
    GELORMINO, MS
    RICKER, NL
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (03) : 793 - 816
  • [29] Model-Predictive Control With Generalized Zone Tracking
    Liu, Su
    Mao, Yawen
    Liu, Jinfeng
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4698 - 4704
  • [30] MODEL-PREDICTIVE CONTROL USING NEURAL NETWORKS
    DRAEGER, A
    ENGELL, S
    RANKE, H
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 1995, 15 (05): : 61 - 66