Multi-Objective Particle Swarm Optimizers: An Experimental Comparison

被引:0
|
作者
Durillo, Juan J. [1 ]
Garcia-Nieto, Jose [1 ]
Nebro, Antonio J. [1 ]
Coello Coello, Carlos A. [2 ,3 ]
Luna, Francisco [1 ]
Alba, Enrique [1 ]
机构
[1] Univ Malaga, Dept Comp Sci, E-29071 Malaga, Spain
[2] CINVESTAV IPN, Dept Comp Sci, Mexico City 07360, DF, Mexico
[3] CNRS, UMI 1375, F-75700 Paris, France
关键词
Particle Swarm Optimization; Multi-Objective Optimization; Comparative Study; EVOLUTIONARY ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Particle Swarm Optimization (PSO) has received increasing attention in the optimization research community since its first appearance in the mid-1990s. Regarding multi-objective optimization, a considerable number of algorithms based on Multi-Objective Particle Swarm Optimizers (MOPSOs) can be found in the specialized literature. Unfortunately, no experimental comparisons have been made in order to clarify which MOPSO version shows the best performance. In this paper, we use a benchmark composed of three well-known problem families (ZDT, DTLZ, and WFG) with the aim of analyzing the search capabilities of six representative state-of-the-art MOPSOs, namely, NSPSO, SigmaMOPSO, OMOPSO, AMOPSO, MOPSOpd, and CLMOPSO. We additionally propose a new MOPSO algorithm, called SMPSO, characterized by including a velocity constraint mechanism, obtaining promising results where the rest perform inadequately.
引用
收藏
页码:495 / +
页数:3
相关论文
共 50 条
  • [1] An Introduction to Multi-Objective Particle Swarm Optimizers
    Coello Coello, Carlos A.
    [J]. SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 3 - 12
  • [2] On convergence of the multi-objective particle swarm optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Roy, Gourab Ghosh
    Abraham, Ajith
    [J]. INFORMATION SCIENCES, 2011, 181 (08) : 1411 - 1425
  • [3] On Convergence of Multi-objective Particle Swarm Optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Abraham, Ajith
    Snasel, Vaclav
    Roy, Gourab Ghosh
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [4] A Scalability Study of Multi-Objective Particle Swarm Optimizers
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 189 - 197
  • [5] Evolutionary Multi-objective Optimization of Particle Swarm Optimizers
    Veenhuis, Christian
    Koeppen, Mario
    Vicente-Garcia, Raul
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2273 - +
  • [6] Multi-objective ligand-protein docking with particle swarm optimizers
    Garcia-Nieto, Jose
    Lopez-Camacho, Esteban
    Jesus Garcia-Godoy, Maria
    Nebro, Antonio J.
    Aldana-Montes, Jose F.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 439 - 452
  • [7] Multiple Particle Swarm Optimizers with Inertia Weight for Multi-objective Optimization
    Hong, Zhang
    [J]. INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 23 - 28
  • [8] On the automatic design of multi-objective particle swarm optimizers: experimentation and analysis
    Nebro, Antonio J.
    Lopez-Ibanez, Manuel
    Garcia-Nieto, Jose
    Coello, Carlos A. Coello
    [J]. SWARM INTELLIGENCE, 2024, 18 (2-3) : 105 - 139
  • [9] On convergence of the multi-objective particle swarm optimizers, (vol 181, pg 1411, 2011)
    Chakraborty, Prithwish
    Das, Swagatam
    Roy, Gourab Ghosh
    Abraham, Ajith
    [J]. INFORMATION SCIENCES, 2011, 181 (16) : 3533 - 3533
  • [10] Growing Particle Swarm Optimizers for Multi-Objective Problems in Design of DC-AC Inverters
    Ono, Katsuma
    Jin'no, Kenya
    Saito, Toshimichi
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (01) : 430 - 433