Multiple Particle Swarm Optimizers with Inertia Weight for Multi-objective Optimization

被引:0
|
作者
Hong, Zhang [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Dept Brain Sci & Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
关键词
particle swarm optimization; swarm intelligence; hybrid search; multi-objective optimization; weighted sum method;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An improved particle swarm optimizer with inertia weight (PSOIW alpha) was applied to multi-objective optimization (MOO). In this paper we present a method of multiple particle swarm optimizers with inertia weight (MPSOIW alpha), which belongs to a kind of the methods of cooperative particle swarm optimization. The crucial idea of the MPSOIW alpha, here, is to reinforce the search ability of the PSOIW alpha by the union's power of plural swarms. To demonstrate its effectiveness and search performance, computer experiments on a suite of 2 objective optimization problems are carried out by a weighted sum method. The resulting Pareto-optimal solution distributions corresponding to each given problem indicate that the linear weighted aggregation among the adopted three kinds of dynamically weighted aggregations is the most suitable for acquiring better search results. Throughout quantitative analysis to experimental data, we clarify the search characteristics and performance effect of the MPSOIW alpha contrast with that of the PSOIW alpha and MPSOIW.
引用
收藏
页码:23 / 28
页数:6
相关论文
共 50 条
  • [1] Evolutionary Multi-objective Optimization of Particle Swarm Optimizers
    Veenhuis, Christian
    Koeppen, Mario
    Vicente-Garcia, Raul
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2273 - +
  • [2] On convergence of the multi-objective particle swarm optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Roy, Gourab Ghosh
    Abraham, Ajith
    [J]. INFORMATION SCIENCES, 2011, 181 (08) : 1411 - 1425
  • [3] An Introduction to Multi-Objective Particle Swarm Optimizers
    Coello Coello, Carlos A.
    [J]. SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 3 - 12
  • [4] On Convergence of Multi-objective Particle Swarm Optimizers
    Chakraborty, Prithwish
    Das, Swagatam
    Abraham, Ajith
    Snasel, Vaclav
    Roy, Gourab Ghosh
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [5] A Scalability Study of Multi-Objective Particle Swarm Optimizers
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 189 - 197
  • [6] Multi-Objective Particle Swarm Optimizers: An Experimental Comparison
    Durillo, Juan J.
    Garcia-Nieto, Jose
    Nebro, Antonio J.
    Coello Coello, Carlos A.
    Luna, Francisco
    Alba, Enrique
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 495 - +
  • [7] An Analysis of Multiple Particle Swarm Optimizers with Inertia Weight with Diversive Curiosity
    Zhang, Hong
    [J]. 2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1754 - 1761
  • [8] Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients
    Tripathi, Praveen Kumar
    Bandyopadhyay, Sanghamitra
    Pal, Sankar Kumar
    [J]. INFORMATION SCIENCES, 2007, 177 (22) : 5033 - 5049
  • [9] Multi-objective ligand-protein docking with particle swarm optimizers
    Garcia-Nieto, Jose
    Lopez-Camacho, Esteban
    Jesus Garcia-Godoy, Maria
    Nebro, Antonio J.
    Aldana-Montes, Jose F.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 439 - 452
  • [10] On the automatic design of multi-objective particle swarm optimizers: experimentation and analysis
    Nebro, Antonio J.
    Lopez-Ibanez, Manuel
    Garcia-Nieto, Jose
    Coello, Carlos A. Coello
    [J]. SWARM INTELLIGENCE, 2024, 18 (2-3) : 105 - 139