On the Borsuk-Ulam Theorem for Lipschitz Mappings on an Infinite-Dimensional Space

被引:0
|
作者
Gel'man, B. D. [1 ,2 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
[2] Peoples Friendship Univ Russia, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
surjective operator; contraction mapping; Lipschitz constant; topological dimension;
D O I
10.1007/s10688-019-0249-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solvability of the equation A(x) = f(x) on the sphere of a Hilbert space and the dimension of its solution set are studied in the case where A is a closed surjective operator and f is an odd Lipschitz mapping. A kind of analogue of the infinite-dimensional version of the Borsuk-Ulam theorem is obtained.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [21] Some generalizations of the Borsuk-Ulam Theorem
    Vendruscolo, Daniel
    Desideri, Patricia E.
    Pergher, Pedro L. Q.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 583 - 593
  • [22] GENERALIZATION OF BORSUK-ULAM THEOREM ON ANTIPODES
    OLEDZKI, J
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (02): : 157 - 162
  • [23] SOME GENERALIZATIONS OF BORSUK-ULAM THEOREM
    EDMUNDS, DE
    WEBB, JRL
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (JUL) : 119 - 125
  • [24] SOME GENERALIZATIONS OF BORSUK-ULAM THEOREM
    NUSSBAUM, RD
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (JUL) : 136 - 158
  • [25] A parametrized version of the Borsuk-Ulam theorem
    Schick, Thomas
    Simon, Robert Samuel
    Spiez, Stanislaw
    Torunczyk, Henryk
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1035 - 1047
  • [26] ON A BORSUK-ULAM THEOREM FOR STIEFEL MANIFOLDS
    YOKOYAMA, O
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (02) : 33 - 34
  • [27] THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES
    ALON, N
    WEST, DB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) : 623 - 628
  • [28] A HOMOLOGY VERSION OF THE BORSUK-ULAM THEOREM
    WALKER, JW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07): : 466 - 468
  • [29] The Borsuk-Ulam theorem for maps into a surface
    Goncalves, Daciberg Lima
    Guaschi, John
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) : 1742 - 1759
  • [30] The Borsuk-Ulam theorem for general spaces
    P. L. Q. Pergher
    D. de Mattos
    E. L. dos Santos
    [J]. Archiv der Mathematik, 2003, 81 : 96 - 102