EM algorithm;
Gibbs sampling;
longitudinal data;
missing data;
rejection sampling;
D O I:
10.2307/3315997
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Nonlinear mixed-effect models are often used in the analysis of longitudinal data. However, it sometimes happens that missing values for some of the model covariates are not purely random. Motivated by an application to HIV viral dynamics, where this situation occurs, the author considers likelihood inference for this type of problem. His approach involves a Monte Carlo EM algorithm, along with a Gibbs sampler and rejection/importance sampling methods. A concrete application is provided.
机构:
Univ Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, France
Inst Rech Int Servier, Dept Clin Pharmacokinet, Suresnes, FranceUniv Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, France
Dumont, Cyrielle
Chenel, Marylore
论文数: 0引用数: 0
h-index: 0
机构:
Inst Rech Int Servier, Dept Clin Pharmacokinet, Suresnes, FranceUniv Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, France
Chenel, Marylore
Mentre, France
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, FranceUniv Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, France