A Knowledge Recommendation Algorithm Based on Time Migration<bold> </bold>

被引:1
|
作者
Yu, Mei [1 ,2 ,3 ,4 ]
Zhang, Jie [2 ,3 ,4 ]
Xu, Tianyi [1 ,3 ,4 ]
Zhao, Mankun [1 ,3 ,4 ]
Liu, Zhiqiang [1 ,3 ,4 ]
Yu, Ruiguo [1 ,2 ,3 ,4 ]
Pan, Mengrui [1 ,3 ,4 ]
Mao, Hongyue [1 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Tianjin Univ, Tianjin Int Engn Inst, Tianjin, Peoples R China
[3] Tianjin Key Lab Adv Networking, Tianjin, Peoples R China
[4] Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
关键词
Recommendation system; time migration; online Judge; knowledge recommendation<bold>; </bold>;
D O I
10.1109/HPCC/SmartCity/DSS.2018.00081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of the Internet, the transmission and acquisition of information is becoming more and more convenient, and the problem of information overload is becoming more and more serious. The birth of the recommendation system effectively alleviates the problem of information overload, which can recommend potential interests to the users according to the user characteristics and project characteristics of the system. So far, the recommendation system has been widely used in business, but it is still immature in the field of online learning. Time transfer as one of the important influencing factors of recommendation system, its influence mode still needs further research and experimental investigation. To solve this problem, we analyze the users' behaviors, and propose time migration model based on different behaviors of users: short-term behavior model and longterm behavior model. With the data of online learning system, modeling the relationship between learners, problems and learners-problems, we propose a knowledge recommendation algorithm based on time migration (KRBTM). Our approach involves four steps: (1) creating the time migration model, (2) adjusting the model of learners and learners-questions with time migration model, (3) computing ratings similarity of questions based on time migration model, (4) applying KRBTM to recommend the top-N questions to learners. In this paper, we test the time migration model on Movielens with a good result. We also apply KRBTM to the real datasets of TJU ACM-ICPC Online Judge from Tianjin University, and the experiments show that KRBTM has a higher recall and F value than traditional algorithms.<bold> </bold>
引用
收藏
页码:377 / 383
页数:7
相关论文
共 50 条
  • [41] A* pathfinding algorithm modification for a 3D engine<bold> </bold>
    Smolka, Jakub
    Miszta, Kamil
    Skublewska-Paszkowska, Maria
    Lukasik, Edyta
    III INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES 18), 2019, 252
  • [42] A charge reconstruction algorithm for DAMPE silicon microstrip detectors<bold> </bold>
    Qiao, Rui
    Peng, Wen-Xi
    Ambrosi, G.
    Asfandiyarov, R.
    Azzarello, P.
    Bernardini, P.
    Bertucci, B.
    Bolognini, A.
    Cadoux, F.
    Caprai, M.
    Cui, Xing-Zhu
    Dai, Guang-Qi
    Domenjoz, M.
    Dong, Yi-Fan
    Duranti, M.
    Fan, Rui-Rui
    Fusco, P.
    Gallo, V
    Gao, Min
    Gargano, F.
    Garrappa, S.
    Gong, Ke
    Guo, Dong-Ya
    Husi, C.
    Ionica, M.
    Liang, Xiao-Hua
    Liu, Ya-Qing
    Loparco, F.
    La Marra, D.
    Marsella, G.
    Mazziotta, M. N.
    De Mitri, I
    Nardinocchi, A.
    Nicola, L.
    Pelleriti, G.
    Pohl, M.
    Postolache, V
    Surdo, A.
    Tykhonov, A.
    Vitillo, S.
    Wang, Huan-Yu
    Wang, Jin-Zhou
    Weber, M.
    Wu, Di
    Wu, X.
    Yang, Jia-Wei
    Zhang, Fei
    Zhao, Hao
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 935 : 24 - 29
  • [43] Phased Array Far Field in the Time Domain<bold> </bold>
    Haupt, R. L.
    Nayeri, P.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2016, : 519 - 520
  • [44] <bold>A Scalable Deterministic Annealing Algorithm for Resource Allocation Problems</bold>
    Sharma, Puneet
    Salapaka, Srinivasa
    Beck, Carolyn
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3092 - 3097
  • [45] <bold>Using a Competitive Clustering Algorithm to Comprehend Web Applications</bold>
    De Lucia, Andrea
    Scanniello, Giuseppe
    Tortora, Genoveffa
    PROCEEDINGS OF THE EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON WEB SITE EVOLUTION, 2006, : 33 - +
  • [46] <bold>Japanese migration in the Vally del Cauca. A regional perspective</bold>
    Arango Londono, Alejandro
    TRANS-PASANDO FRONTERAS, 2011, (01) : 15 - 39
  • [47] SFuzz: Slice-based Fuzzing for Real-Time Operating Systems<bold> </bold>
    Chen, Libo
    Cai, Quanpu
    Ma, Zhenbang
    Wang, Yanhao
    Hu, Hong
    Shen, Minghang
    Liu, Yue
    Guo, Shanqing
    Duan, Haixin
    Jiang, Kaida
    Xue, Zhi
    PROCEEDINGS OF THE 2022 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, CCS 2022, 2022, : 485 - 498
  • [48] Bold Recommendation, Analyst Coverage, and Stock Return
    Cheong, Foong Soon
    Lee, Changhee
    JOURNAL OF ACCOUNTING AUDITING AND FINANCE, 2025, 40 (01): : 218 - 240
  • [49] SEGMENTATION-BASED PARAMETRIC PAINTING<bold> </bold>
    de Guevara, Manuel Ladron
    Fisher, Matt
    Hertzinann, Aaron
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS, ICMEW 2024, 2024,
  • [50] Memristor-Based Phase Shifter<bold> </bold>
    Mutlu, Resat
    Karakulak, Ertugrul
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 370 - 374