Degree sums for edges and cycle lengths in graphs

被引:0
|
作者
Brandt, S [1 ]
Veldman, HJ [1 ]
机构
[1] UNIV TWENTE,FAC APPL MATH,NL-7500 AE ENSCHEDE,NETHERLANDS
关键词
degree sum; circumference; cycle hamiltonian graph; pancyclic graph; tough graph; closure;
D O I
10.1002/(SICI)1097-0118(199708)25:4<253::AID-JGT2>3.0.CO;2-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n, satisfying d(u) + d(v) greater than or equal to n,for every edge uv of G. We show that the circumference - the length of a longest cycle - of G can be expressed in terms of a certain graph parameter, and can be computed in polynomial time. Moreover, we show that G contains cycles of every length between 3 and the circumference, unless G is complete bipartite. If G is 1-tough then it is pancyclic or G = K-r,K-r with r = n/2. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:253 / 256
页数:4
相关论文
共 50 条
  • [21] Sums of Powers of the Degrees of Graphs with k Cut Edges
    Li, Shuchao
    Yan, Lixia
    GRAPHS AND COMBINATORICS, 2011, 27 (05) : 727 - 740
  • [22] Sums of Powers of the Degrees of Graphs with k Cut Edges
    Shuchao Li
    Lixia Yan
    Graphs and Combinatorics, 2011, 27 : 727 - 740
  • [23] Cycle lengths in randomly perturbed graphs
    Aigner-Horev, Elad
    Hefetz, Dan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 867 - 884
  • [24] CYCLE LENGTHS AND CIRCUIT MATROIDS OF GRAPHS
    WOODALL, DR
    DISCRETE MATHEMATICS, 1992, 105 (1-3) : 269 - 273
  • [25] Degree and total degree of edges in bipolar fuzzy graphs with application
    Borzooei, R. A.
    Rashmanlou, Hossein
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (06) : 3271 - 3280
  • [26] Cycle lengths and chromatic number of graphs
    Mihók, P
    Schiermeyer, I
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 147 - 149
  • [27] On arithmetic progressions of cycle lengths in graphs
    Verstraëte, J
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04): : 369 - 373
  • [28] EXISTENCE OF GRAPHS WITH SPECIFIED CYCLE LENGTHS
    MCCUAIG, W
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 127 - 133
  • [29] Cycle lengths in sparse random graphs
    Alon, Yahav
    Krivelevich, Michael
    Lubetzky, Eyal
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) : 444 - 461
  • [30] Number of edges in degree-magic graphs
    Bezegova, L'udmila
    Ivanco, Jaroslav
    DISCRETE MATHEMATICS, 2013, 313 (12) : 1349 - 1357