A posteriori error estimates of the lowest order Raviart-Thomas mixed finite element methods for convective diffusion optimal control problems

被引:0
|
作者
Hua, Yuchun [1 ]
Tang, Yuelong [1 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Inst Computat Math, Yongzhou 425100, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
parabolic equations; optimal control problems; a posteriori error estimates; mixed finite element methods; BOUNDARY CONTROL-PROBLEMS; APPROXIMATION; EQUATIONS;
D O I
10.1186/s13660-015-0784-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the mixed finite element methods for quadratic optimal control problems governed by convective diffusion equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. Using some proper duality problems, we derive a posteriori L-2(0, T; L-2(Omega)) error estimates for the scalar functions. Such estimates, which are apparently not available in the literature, are an important step toward developing reliable adaptive mixed finite element approximation schemes for the control problem.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A posteriori error estimates for mixed finite element solutions of convex optimal control problems
    Chen, Yanping
    Liu, Wenbin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) : 76 - 89
  • [22] REHABILITATION OF THE LOWEST-ORDER RAVIART-THOMAS ELEMENT ON QUADRILATERAL GRIDS
    Bochev, Pavel B.
    Ridzal, Denis
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 487 - 507
  • [23] Hermite analogs of the lowest order Raviart-Thomas mixed method for convection-diffusion equations
    Ruas, V.
    Radu, F. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2693 - 2713
  • [24] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 37 - 53
  • [25] A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems
    Hou, Chunjuan
    Chen, Yanping
    Lu, Zuliang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [26] A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems
    Chunjuan Hou
    Yanping Chen
    Zuliang Lu
    Journal of Inequalities and Applications, 2015
  • [27] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820
  • [28] Optimal preconditioning for Raviart-Thomas mixed formulation of second-order elliptic problems
    Powell, CE
    Silvester, D
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (03) : 718 - 738
  • [29] A POSTERIORI ERROR ESTIMATES OF MIXED METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Chen, Yanping
    Liu, Lingli
    Lu, Zuliang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1135 - 1157
  • [30] Preconditioning projection nonconforming element method for the lowest-order Raviart-Thomas mixed triangular element method
    Chen, JR
    Li, LK
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 93 (01) : 31 - 49