机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
GPU Prime Ltd, Cambridge, EnglandQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Markesteijn, Anton P.
[1
,4
]
Gryazev, Vasily
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, EnglandQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Gryazev, Vasily
[1
]
Karabasov, Sergey A.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
GPU Prime Ltd, Cambridge, England
Lobachevsky State Univ Nizhni Novgorod, Ashkhabadskaya St 4, Nizhnii Novgorod 603105, RussiaQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Karabasov, Sergey A.
[1
,4
,5
]
Ayupov, Ruslan Sh.
论文数: 0引用数: 0
h-index: 0
机构:
Baranov Cent Inst Aviat Motor Dev, Dept Supercomp Modelling, 2 Aviamotornaya St, Moscow 111116, RussiaQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Ayupov, Ruslan Sh.
[2
]
Benderskiy, Leonid A.
论文数: 0引用数: 0
h-index: 0
机构:
Baranov Cent Inst Aviat Motor Dev, Dept Supercomp Modelling, Sect Supercomp Programming, 2 Aviamotornaya St, Moscow 111116, RussiaQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Benderskiy, Leonid A.
[3
]
Lyubimov, Dmitriy A.
论文数: 0引用数: 0
h-index: 0
机构:
Baranov Cent Inst Aviat Motor Dev, Dept Supercomp Modelling, 2 Aviamotornaya St, Moscow 111116, RussiaQueen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Lyubimov, Dmitriy A.
[2
]
机构:
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Baranov Cent Inst Aviat Motor Dev, Dept Supercomp Modelling, 2 Aviamotornaya St, Moscow 111116, Russia
[3] Baranov Cent Inst Aviat Motor Dev, Dept Supercomp Modelling, Sect Supercomp Programming, 2 Aviamotornaya St, Moscow 111116, Russia
[4] GPU Prime Ltd, Cambridge, England
[5] Lobachevsky State Univ Nizhni Novgorod, Ashkhabadskaya St 4, Nizhnii Novgorod 603105, Russia
Flow and noise solutions of the two Large-Eddy Simulation (LES) approaches are evaluated for the jet flow conditions corresponding to a benchmark coaxial jet case from the European Union Computation of Coaxial Jet Noise experiment. The jet is heated and issues for a short-cowl axisymmetric nozzle with a central body at a transonic speed. The first LES method is based on the Compact Accurately Boundary-Adjusting High-Resolution Technique (CABARET) scheme, for which implementation features include asynchronous time stepping at an optimal Courant-Friedrichs-Lewy number, a wall model, and a synthetic turbulence inflow boundary condition. The CABARET LES is implemented on Graphics Processing Units. The second LES approach is based on the hybrid Reynolds-average Navier-Stokes (RANS)/implicit LES method that uses a mixture of a high-order Roe and Monotonicity-Preserving reconstruction of the 9th order (MP9 scheme) and a wall distance model of the improved delayed detached-eddy simulation type. The RANS/implicit LES method is run on a Message Passing Interface (MPI) cluster. Two grid generation approaches are considered: the unstructured grid using OpenFOAM utility snappyHexMesh and the conventional structured multiblock body-fitted curvilinear grid. The LES flow solutions are compared with the experiment and also with solutions obtained from the standard axisymmetric RANS method using the k-omega turbulence model. For noise predictions, the LES solutions are coupled with the penetrable surface formation of the Ffowcs Williams-Hawkings method. The results of noise predictions are compared with the experiment, and the effect of different LES grids and acoustic integration surfaces is discussed.
机构:
NASA, Ames Research Cent, Moffett, Field, CA, USA, NASA, Ames Research Cent, Moffett Field, CA, USANASA, Ames Research Cent, Moffett, Field, CA, USA, NASA, Ames Research Cent, Moffett Field, CA, USA