Renormalization of the bilocal sine-Gordon model

被引:2
|
作者
Steib, I [1 ]
Nagy, S. [1 ]
机构
[1] Univ Debrecen, Dept Theoret Phys, POB 5, H-4010 Debrecen, Hungary
来源
关键词
Renormalization; sine-Gordon model; QUANTUM-FIELD-THEORY; COULOMB GAS; EQUATION; FLOW;
D O I
10.1142/S0217751X19501173
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The functional renormalization group treatment is presented for the two-dimensional sine-Gordon model including a bilocal term in the potential, which contributes to the flow at the tree level. It is shown that the flow of the bilocal term can substitute the evolution of the wave function renormalization constant, since it can recover the Kosterlitz-Thouless type phase transition. The flows can also reveal the connection between the sine-Gordon and the noninteracting Thirring models at a special value of the wave number parameter.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Breathers in the elliptic sine-Gordon model
    Castro-Alvaredo, OA
    Fring, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (40): : 10233 - 10249
  • [32] Double sine-Gordon model revisited
    Takács, G
    Wágner, F
    NUCLEAR PHYSICS B, 2006, 741 (03) : 353 - 367
  • [33] FERMIONIZATION OF THE SUPERSYMMETRIC SINE-GORDON MODEL
    NAKAWAKI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (02): : 426 - 428
  • [34] A MODIFIED DISCRETE SINE-GORDON MODEL
    ZAKRZEWSKI, WJ
    NONLINEARITY, 1995, 8 (04) : 517 - 540
  • [35] Asymptotic safety in the sine-Gordon model
    Kovacs, J.
    Nagy, S.
    Sailer, K.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [36] SINE-GORDON MODEL OF MOVING DISLOCATION
    HASHIZUME, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (07) : 2241 - 2247
  • [37] Renormalizable parameters of the sine-Gordon model
    Nagy, S.
    Nandori, I.
    Polonyi, J.
    Sailer, K.
    PHYSICS LETTERS B, 2007, 647 (2-3) : 152 - 158
  • [38] THE LATTICE QUANTUM SINE-GORDON MODEL
    IZERGIN, AG
    KOREPIN, VE
    LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (03) : 199 - 205
  • [39] Integrable noncommutative sine-Gordon model
    Lechtenfeld, O
    Mazzanti, L
    Penati, S
    Popov, AD
    Tamassia, L
    NUCLEAR PHYSICS B, 2005, 705 (03) : 477 - 503
  • [40] The sine-Gordon model revisited: I
    Niccoli, G.
    Teschner, J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,