Optical Solitons for The Cubic-Quintic Nonlinear Schrodinger Equation<bold> </bold>

被引:7
|
作者
Al-Ghafri, K. S. [1 ]
Krishnan, E. V. [2 ]
Biswas, Anjan [3 ,4 ]
机构
[1] Minist Higher Educ, Ibri Coll Appl Sci, POB 14, Ibri 516, Oman
[2] Sultan Qaboos Univ, Dept Math & Stat, POB 36, Muscat 123, Oman
[3] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
关键词
SOLITARY WAVE SOLUTIONS; DISPERSION REGION; PROPAGATION; BISTABILITY;
D O I
10.1063/1.5081522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the soliton solutions to nonlinear Schrodinger (NLS) equation with anti-cubic nonlinearity in non-kerr media. The complex form of the NLSE has been reduced to nonlinear ordinary differential equation (ODE) using soliton ansatz. By implementing two techniques, namely, improved projective Riccati equations method and new mapping method, the ODE is solved analytically. Consequently, various types of solitons such as bright, dark, singular, dark-singular optical soliton solutions are obtained.<bold> </bold>
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Akhmediev Breathers and Kuznetsov-Ma Solitons in the Cubic-Quintic Nonlinear Schrodinger Equation
    Pan, Changchang
    Wu, Gangzhou
    Zhang, Lei
    Zhang, Huicong
    [J]. IEEE PHOTONICS JOURNAL, 2024, 16 (05):
  • [22] Exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Zhu, Jia-Min
    Ma, Zheng-Yi
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (03) : 958 - 964
  • [23] Cusp solitons in the cubic quintic nonlinear Schrodinger equation
    Palacios, SL
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2001, 10 (03) : 293 - 296
  • [24] Solitons for the cubic-quintic nonlinear Schrodinger equation with time- and space-modulated coefficients
    Belmonte-Beitia, J.
    Cuevas, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (16)
  • [25] Bright solitons of the nonautonomous cubic-quintic nonlinear Schrodinger equation with sign-reversal nonlinearity
    Loomba, Shally
    Pal, Ritu
    Kumar, C. N.
    [J]. PHYSICAL REVIEW A, 2015, 92 (03):
  • [26] Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrodinger equations
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Liu, Yi
    Grelu, Philippe
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)
  • [27] Nonlocal Cubic-Quintic Nonlinear Schrodinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation
    Sakthivinayagam, P.
    [J]. PHYSICS OF WAVE PHENOMENA, 2022, 30 (06) : 387 - 396
  • [28] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    [J]. CHINESE PHYSICS B, 2016, 25 (05)
  • [29] A variational approach in the dissipative cubic-quintic nonlinear Schrodinger equation
    Freitas, DS
    De Oliveira, JR
    [J]. MODERN PHYSICS LETTERS B, 2002, 16 (1-2): : 27 - 32
  • [30] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252