Filament-induced nonlinear hyperspectral fluorescence imaging

被引:0
|
作者
Wang, Xiaoyue [1 ]
Nan, Junyi [1 ,2 ]
Xue, Jiayun [3 ]
Liu, Weiwei [3 ]
Yan, Ming [1 ,2 ]
Yuan, Shuai [2 ,4 ]
Huang, Kun [1 ,2 ]
Zeng, Heping [1 ,2 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Chongqing Inst East China Normal Univ, 2 Huizhu Rd, Chongqing 401147, Peoples R China
[3] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Microscale Opt Informat Sci & Tech, Tianjin 300071, Peoples R China
[4] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Filamentation; Gas sensing; LASER; FLAMES; MJ;
D O I
10.1016/j.optlaseng.2022.107109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral fluorescence imaging is promising for many applications including gas sensing and imaging. However, achieving spectrally and spatially resolved images for quantitative multi-gas and multi-parameter analysis remains challenging, especially in a non-cooperative environment. Here, we report a simple technique, based on filament-induced nonlinear spectroscopy, for information-rich gas imaging. We obtained three-dimensional (3D) hyperspectral images for an alcohol/air flame with sub-millimeter spatial resolutions. For each hypercube, a broadband fluorescence fingerprint spectrum, containing 2500 spectral elements (350-600 nm at a spectral resolution of 0.1 nm), was acquired. This technique, with backward fluorescence detection, enabled high-spatial resolution point-wise imaging in a non-cooperative situation, e.g., in a sealed tube. Without meticulously arranged cameras, the technique may open up new opportunities for remote gas imaging and tomography.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] THIN FILAMENT-INDUCED TRANSITION BETWEEN 2 MYOSIN FILAMENT STATES IN A CRUSTACEAN MUSCLE
    FLITNEY, FW
    MACDONALD, SL
    JOURNAL OF PHYSIOLOGY-LONDON, 1978, 278 (MAY): : P11 - P12
  • [32] Polarization-gated filament-induced remote breakdown spectroscopy
    郭豪
    朱忠彬
    王铁军
    陈娜
    刘尧香
    张健浩
    孙海轶
    刘建胜
    李儒新
    Chinese Optics Letters, 2018, 16 (03) : 90 - 93
  • [33] Stand-off filament-induced ablation of gallium arsenide
    Weidman, Matthew
    Lim, Khan
    Ramme, Mark
    Durand, Magali
    Baudelet, Matthieu
    Richardson, Martin
    APPLIED PHYSICS LETTERS, 2012, 101 (03)
  • [34] Filament-induced Waveguides in As4Ge30S66
    Kadan, V.
    Blonskyi, I.
    Shpotyuk, O.
    Iovu, M.
    Korenyuk, P.
    Pavlov, I.
    LAT 2010: INTERNATIONAL CONFERENCE ON LASERS, APPLICATIONS, AND TECHNOLOGIES, 2011, 7994
  • [35] Angular dependence of filament-induced plasma emission from a GaAs surface
    Weidman, Matthew
    Ramme, Mark
    Bousquet, Bruno
    Lim, Khan
    Durand, Magali
    Baudelet, Matthieu
    Richardson, Martin
    OPTICS LETTERS, 2015, 40 (19) : 4548 - 4551
  • [36] Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials
    Abdul Kalam, S.
    Balaji Manasa Rao, S. V.
    Jayananda, M.
    Venugopal Rao, S.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2020, 35 (12) : 3007 - 3020
  • [37] Filament-induced breakdown spectroscopy of solids through highly scattering media
    Frigerio, Leandro
    Latty, Kyle
    Burger, Milos
    Hartig, Kyle C.
    Jovanovic, Igor
    OPTICS LETTERS, 2024, 49 (17) : 4942 - 4945
  • [38] Propagation distance-resolved characteristics of filament-induced copper plasma
    Ghebregziabher, Isaac
    Hartig, Kyle C.
    Jovanovic, Igor
    OPTICS EXPRESS, 2016, 24 (05): : 5263 - 5276
  • [39] Remote time-resolved filament-induced breakdown spectroscopy of biological materials
    Xu, H. L.
    Liu, W.
    Chin, S. L.
    OPTICS LETTERS, 2006, 31 (10) : 1540 - 1542
  • [40] Limits of Detection of Chemical Elements in an Aqueous Aerosol in Filament-Induced Breakdown Spectroscopy
    Golik, S. S.
    Mayor, A. Yu.
    Lisitsa, V. V.
    Tolstonogova, Yu. S.
    Ilyin, A. A.
    Borovskiy, A. V.
    Bukin, O. A.
    JOURNAL OF APPLIED SPECTROSCOPY, 2021, 88 (02) : 337 - 342