Convergence of BSDEs and homogenization of elliptic semilinear PDEs

被引:1
|
作者
Gaudron, G [1 ]
机构
[1] INSA Toulouse, Dept Math, LSP CNRS, UMR 5583, F-31077 Toulouse 4, France
关键词
random media; periodic media; backward stochastic differential equations; homogenization; convergence of stochastic processes; elliptic semi-linear PDEs;
D O I
10.1081/SAP-120006108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a result of weak convergence for Backward Stochastic Differential Equations with a random terminal time. Then we can deduce results of homogenization for elliptic semi-linear PDES with random or periodic coefficients and whose non-linearity may have a quadratic growth in the gradient.
引用
收藏
页码:791 / 813
页数:23
相关论文
共 50 条
  • [41] Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs
    Abdulle, Assyr
    Brehier, Charles-Edouard
    Vilmart, Gilles
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 258 - 292
  • [42] On the convergence of a cascadic multigrid method for semilinear elliptic problem
    Zhou, SZ
    Hu, HX
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 407 - 417
  • [43] Reflected BSDE and Locally Periodic Homogenization of Semilinear PDEs with Nonlinear Neumann Boundary Condition
    Diakhaby, Aboubakary
    Ouknine, Youssef
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (02) : 254 - 273
  • [44] Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients:: A probabilistic approach
    Pardoux, É
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) : 498 - 520
  • [45] Convergence Rates of Solutions for Elliptic Reiterated Homogenization Problems
    Wang, Juan
    Zhao, Jie
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 839 - 856
  • [46] Convergence Rates of Solutions for Elliptic Reiterated Homogenization Problems
    Juan Wang
    Jie Zhao
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 839 - 856
  • [47] Convergence Rates in L 2 for Elliptic Homogenization Problems
    Kenig, Carlos E.
    Lin, Fanghua
    Shen, Zhongwei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (03) : 1009 - 1036
  • [48] Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2193 - 2225
  • [49] A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics
    Kremsner, Stefan
    Steinicke, Alexander
    Szolgyenyi, Michaela
    RISKS, 2020, 8 (04) : 1 - 18
  • [50] The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs
    Harbrecht, Helmut
    Schmidlin, Marc
    Schwab, Christoph
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (05): : 881 - 917