Congruences with Eisenstein series and μ-invariants

被引:3
|
作者
Bellaiche, Joel [1 ]
Pollack, Robert [2 ]
机构
[1] Brandeis Univ, Dept Math, 415 South St, Waltham, MA 02453 USA
[2] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
关键词
Iwasawa theory; Hida theory; mu-invariants; residually reducible; IWASAWA INVARIANTS; ZETA-FUNCTIONS; SPECIAL VALUES; MODULAR-FORMS; PERIODS; CURVES; TOWERS;
D O I
10.1112/S0010437X19007127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the variation of mu-invariants in Hida families with residually reducible Galois representations. We prove a lower bound for these invariants which is often expressible in terms of the p-adic zeta function. This lower bound forces these mu-invariants to be unbounded along the family, and we conjecture that this lower bound is an equality. When U-p - 1 generates the cuspidal Eisenstein ideal, we establish this conjecture and further prove that the p-adic L-function is simply a power of p up to a unit (i.e. lambda = 0). On the algebraic side, we prove analogous statements for the associated Selmer groups which, in particular, establishes the main conjecture for such forms.
引用
收藏
页码:863 / 901
页数:39
相关论文
共 50 条
  • [41] Geometric Eisenstein series
    Braverman, A
    Gaitsgory, D
    [J]. INVENTIONES MATHEMATICAE, 2002, 150 (02) : 287 - 384
  • [42] The connection to eisenstein series
    Rapoport, Michael
    Wedhorn, Torsten
    [J]. ASTERISQUE, 2007, (312) : 191 - 208
  • [43] ON HERMITIAN EISENSTEIN SERIES
    NAGAOKA, S
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (04) : 115 - 117
  • [44] TRUNCATION OF EISENSTEIN SERIES
    Lapid, Erez
    Ouellette, Keith
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) : 665 - 685
  • [45] Sixteen Eisenstein series
    Shaun Cooper
    Heung Yeung Lam
    [J]. The Ramanujan Journal, 2009, 18 : 33 - 59
  • [46] Geometric Eisenstein series
    A. Braverman
    D. Gaitsgory
    [J]. Inventiones mathematicae, 2002, 150 : 287 - 384
  • [47] Biquadratic Eisenstein Series
    D. S. Kataev
    [J]. Journal of Mathematical Sciences, 2003, 116 (1) : 2993 - 3009
  • [48] EISENSTEIN SERIES AND TRANSCENDENCE
    BERTRAND, D
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1976, 104 (03): : 309 - 321
  • [49] Periods of Eisenstein series
    Lapid, E
    Rogawski, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (06): : 513 - 516
  • [50] Monomials of Eisenstein series
    Griffin, Trevor
    Kenshur, Nathan
    Price, Abigail
    Vandenberg-Daves, Bradshaw
    Xue, Hui
    Zhu, Daozhou
    [J]. JOURNAL OF NUMBER THEORY, 2021, 219 : 445 - 459