Counterexamples to a conjecture of Merker on 3-connected cubic planar graphs with a large cycle spectrum gap

被引:1
|
作者
Zamfirescu, Carol T. [1 ,2 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Babe Bolyai Univ, Dept Math, Cluj Napoca, Romania
关键词
Cycles; Cycle spectrum; 3-connected; Cubic; Planar graphs;
D O I
10.1016/j.disc.2022.112824
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Merker conjectured that if k >= 2 is an integer and G a 3-connected cubic planar graph of circumference at least k, then the set of cycle lengths of G must contain at least one element of the interval [k, 2k + 2]. We here prove that for every even integer k >= 6 there is an infinite family of counterexamples. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:2
相关论文
共 50 条