Counterexamples to a conjecture of Merker on 3-connected cubic planar graphs with a large cycle spectrum gap

被引:1
|
作者
Zamfirescu, Carol T. [1 ,2 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Babe Bolyai Univ, Dept Math, Cluj Napoca, Romania
关键词
Cycles; Cycle spectrum; 3-connected; Cubic; Planar graphs;
D O I
10.1016/j.disc.2022.112824
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Merker conjectured that if k >= 2 is an integer and G a 3-connected cubic planar graph of circumference at least k, then the set of cycle lengths of G must contain at least one element of the interval [k, 2k + 2]. We here prove that for every even integer k >= 6 there is an infinite family of counterexamples. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Gaps in the cycle spectrum of 3-connected cubic planar graphs
    Merker, Martin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 68 - 75
  • [2] TIGHT GAPS IN THE CYCLE SPECTRUM OF 3-CONNECTED PLANAR GRAPHS
    Cui, Qing
    Lo, On-Hei Solomon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2039 - 2048
  • [3] A note on 3-connected cubic planar graphs
    Lu, Xiaoyun
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 2054 - 2058
  • [4] Nonhamiltonian 3-connected cubic planar graphs
    Aldred, REL
    Bau, S
    Holton, DA
    McKay, BD
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (01) : 25 - 32
  • [5] Tight cycle spectrum gaps of cubic 3-connected toroidal graphs
    Lo, On-Hei Solomon
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [6] Small cycle covers of 3-connected cubic graphs
    Yang, Fan
    Li, Xiangwen
    DISCRETE MATHEMATICS, 2011, 311 (2-3) : 186 - 196
  • [7] On Convex Greedy Embedding Conjecture for 3-Connected Planar Graphs
    Ghosh, Subhas Kumar
    Sinha, Koushik
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2009, 5699 : 145 - 156
  • [8] HAMILTONIAN CYCLES IN CUBIC 3-CONNECTED BIPARTITE PLANAR GRAPHS
    HOLTON, DA
    MANVEL, B
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (03) : 279 - 297
  • [9] DECOMPOSITION OF 3-CONNECTED CUBIC GRAPHS
    FOUQUET, JL
    THUILLIER, H
    DISCRETE MATHEMATICS, 1993, 114 (1-3) : 181 - 198
  • [10] CYCLES THROUGH GIVEN VERTICES IN PLANAR 3-CONNECTED CUBIC GRAPHS
    FOUQUET, JL
    THUILLIER, H
    ARS COMBINATORIA, 1985, 20B : 75 - 105