Chelate-Pb Intermediate Engineering for High-Efficiency Perovskite Solar Cells

被引:14
|
作者
Niu, Jinzhi [1 ]
Yang, Dong [1 ,3 ]
Yang, Zhou [1 ]
Wang, Dapeng [1 ]
Zhu, Xuejie [1 ]
Zhang, Xiaorong [1 ]
Zuo, Shengnan [1 ]
Feng, Jiangshan [1 ]
Liu, Shengzhong Frank [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Shaanxi Engn Lab Adv Energy Technol, Key Lab Appl Surface & Colloid Chem,Minist Educ, Shaanxi Key Lab Adv Energy Devices,Sch Mat Sci &, Xian 710119, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, IChEM, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] Virginia Tech, CEHMS, Blacksburg, VA 24061 USA
关键词
perovskite; 1,8-octanedithiol; additive; chelate intermediate; grain size; SOLUTION-PROCESSED PEROVSKITE; POWER CONVERSION EFFICIENCY; HIGH-PERFORMANCE; HALIDE PEROVSKITES; ELECTRON; LAYER; CRYSTALLIZATION; HYSTERESIS; INTERFACE; STABILITY;
D O I
10.1021/acsami.8b02257
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Crystallization quality and grain size are key factors in fabricating high-performance planar-type perovskite photovoltaics. Herein, we used 1,8-octanedithiol as an effective additive in the [HC-(NH2)(2)](0.95)CS0.05PbI3 (FA(0.95)Cs(0.05)PbI(3)) solution to improve the FA(0.95)Cs(0.05)PbI(3) film quality via solution processing. 1,8-Octanedithiol would coordinate with lead to form the chelate-Pb compound, leading to smaller Gibbs free energy during the perovskite crystallization process, facilitating formation of high-quality perovskite films with larger grains, smoother surfaces, lower electron trap densities, and longer carrier lifetimes compared to the nonadditive ones. As a result, the champion efficiency for devices with 3% 1,8-octanedithiol-doped FA(0.95)Cs(0.05)PbI(3) is raised to 19.36% from 18.39% of a device without the additive. The new technique is a promising way to fabricate perovskite photovoltaics with high performance.
引用
收藏
页码:14744 / 14750
页数:7
相关论文
共 50 条
  • [11] Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells
    Prochowicz, Daniel
    Runjhun, Rashmi
    Tavakoli, Mohammad Mahdi
    Yadav, Pankaj
    Saski, Marcin
    Alanazi, Anwar Q.
    Kubicki, Dominik J.
    Kaszkur, Zbigniew
    Zakeeruddin, Shaik M.
    Lewinski, Janusz
    Gratzel, Michael
    CHEMISTRY OF MATERIALS, 2019, 31 (05) : 1620 - 1627
  • [12] Interfacial Engineering for High-Efficiency Nanorod Array-Structured Perovskite Solar Cells
    Cao, Bingbing
    Liu, Haoran
    Yang, Longkai
    Li, Xin
    Liu, Hu
    Dong, Pei
    Mai, Xianmin
    Hou, Chuanxin
    Wang, Ning
    Zhang, Jiaoxia
    Fan, Jincheng
    Gao, Qiang
    Guo, Zhanhu
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (37) : 33770 - 33780
  • [13] Vertical grain-shape engineering for high-efficiency and stable perovskite solar cells
    Shi, Yifeng
    Zheng, Yifan
    Xiao, Xun
    Wang, Pengxiang
    Zhang, Guodong
    Li, Qingyuan
    Zhang, Ge
    Shao, Yuchuan
    CELL REPORTS PHYSICAL SCIENCE, 2023, 4 (11):
  • [14] Toward the Design of High-Efficiency Perovskite Solar Cells
    Schulz, Philip
    Lu, Jiong
    ACS ENERGY LETTERS, 2022, 7 (07): : 2401 - 2402
  • [15] Green anti-solvent engineering for high-efficiency and environmentally friendly perovskite solar cells
    Yang, Yuwen
    Huang, Zhaolong
    Gao, Hao
    Xu, Zicong
    Fang, Weihong
    Chen, Yichuan
    Hu, Yuehui
    Yi, Zhijie
    Huang, Jiayu
    Zhu, Hua
    RSC ADVANCES, 2024, 14 (44) : 32370 - 32388
  • [16] Defect-Engineering-Enabled High-Efficiency All-Inorganic Perovskite Solar Cells
    Liang, Jia
    Han, Xiao
    Yang, Ji-Hui
    Zhang, Boyu
    Fang, Qiyi
    Zhang, Jing
    Ai, Qing
    Ogle, Meredith M.
    Terlier, Tanguy
    Marti, Angel A.
    Lou, Jun
    ADVANCED MATERIALS, 2019, 31 (51)
  • [17] Solvent engineering of FK209 Cobalt and Lithium for high-efficiency perovskite solar cells
    Hayali, Ahmed
    Alkaisi, Maan M.
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 2253 - 2259
  • [18] Research Progress of High-efficiency Perovskite Solar Cells and Their Tandem Cells
    Liu Z.
    Chen X.
    Hou G.
    Li Y.
    Ding Y.
    Zhao Y.
    Zhang X.
    Cailiao Daobao/Materials Reports, 2021, 35 (15): : 15031 - 15046
  • [19] High-Efficiency Perovskite/Silicon Heterojunction Tandem Solar Cells
    Niesen, Bjoern
    Werner, Jeremie
    Walter, Arnaud
    Seif, Johannes P.
    Allebe, Christophe
    Sacchetto, Davide
    Despeisse, Matthieu
    Moon, Soo-Jin
    Nicolay, Sylvain
    De Wolf, Stefaan
    Ballif, Christophe
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 77 - 81
  • [20] Nanoconfined Crystallization for High-Efficiency Inorganic Perovskite Solar Cells
    Jiang, Xiao
    Wang, Kai
    Wang, Hui
    Duan, Lianjie
    Du, Minyong
    Wang, Likun
    Cao, Yuexian
    Liu, Lu
    Pang, Shuping
    Liu, Shengzhong
    SMALL SCIENCE, 2021, 1 (02):