Multi-agent reinforcement learning for strategic bidding in power markets

被引:0
|
作者
Tellidou, Athina C. [1 ]
Bakirtzis, Anastasios G. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, Thessaloniki 54124, Greece
关键词
electricity spot markets; multi-agent modeling; Q-learning algorithm; reinforcement learning; supplier bidding strategy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the agent-based simulation discussed in this paper, we study the dynamics of the power market, when suppliers act following a Q-learning based bidding strategy. Power suppliers aim to satisfy two objectives: the maximization of their profit and their utilization rate. To meet with success their goals, they need to acquire a complex behavior by learning through a continuous exploiting and exploring process. Reinforcement learning theory provides a formal framework, along with a family of learning methods. In this paper we use Q-learning algorithm, perhaps the most popular among temporal difference methods. Q-learning offers suppliers the ability to evaluate their actions and to retain the most profitable of them. A five bus power system is used for our case studies; our experiments are contacted with three supplier-agents in all cases but the last one where nine agents participate. The Locational Marginal Pricing (LMP) system serves as the market clearing mechanism.
引用
收藏
页码:400 / 405
页数:6
相关论文
共 50 条
  • [21] PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems
    Biagioni, David
    Zhang, Xiangyu
    Wald, Dylan
    Vaidhynathan, Deepthi
    Chintala, Rohit
    King, Jennifer
    Zamzam, Ahmed S.
    [J]. PROCEEDINGS OF THE 2022 THE THIRTEENTH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, E-ENERGY 2022, 2022, : 565 - 570
  • [22] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [25] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [26] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    [J]. Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [27] A multi-agent deep reinforcement learning framework for algorithmic trading in financial markets
    Shavandi, Ali
    Khedmati, Majid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [28] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [29] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +
  • [30] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,