Data-driven controller tuning using frequency domain specifications

被引:17
|
作者
Garcia, Daniel [1 ]
Karimi, Alireza [1 ]
Longchamp, Roland [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Automat, Stn 9, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1021/ie0513043
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents an overview of our recent work on a model-free proportional- integral - derivative (PID) controller tuning procedure. The method can handle different stability and performance indicators in the frequency domain. The phase margin, gain margin, crossover frequency, and more-advanced indicators, which are the infinity-norm of the sensitivity functions, can be considered for the design. The actual values of the design parameters are measured directly on the system, thanks to closed-loop experiments. A frequency criterion is then defined as the weighted sum of squared errors between the measured and desired values of the design parameters. The minimization is done iteratively using the Gauss-Newton algorithm. The approach presented does not require any parametric model of the plant and can be applied to a wide range of industrial applications. Simulation examples show the rapid convergence of the algorithm and the effectiveness of the method for PID controller tuning.
引用
收藏
页码:4032 / 4042
页数:11
相关论文
共 50 条
  • [11] Data-Driven Controller Parameter Tuning for Nonlinear Systems using Backstepping Method
    Saito, Yuki
    Masuda, Shiro
    Toyoda, Mitsuru
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2024, 144 (07) : 643 - 650
  • [12] Data-driven controller synthesis for abstract systems with regular language specifications
    Pola, Giordano
    Masciulli, Tommaso
    De Santis, Elena
    Di Benedetto, Maria Domenica
    [J]. AUTOMATICA, 2021, 134
  • [13] Data-Driven Tuning of Stable Minimum Phase H∞ Controller
    Morita, Akifumi
    Yubai, Kazuhiro
    Yashiro, Daisuke
    Komada, Satoshi
    [J]. 2019 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2019,
  • [14] A comparison of model-based and data-driven controller tuning
    Formentin, Simone
    van Heusden, Klaske
    Karimi, Alireza
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (10) : 882 - 897
  • [15] Asymptotically exact direct data-driven multivariable controller tuning
    Formentin, Simone
    Bisoffi, Andrea
    Oomen, Tom
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 1349 - 1354
  • [16] Self-tuning regulatory controller of cyclical disturbances using data-driven frequency estimator based on fuzzy logic
    Pereira, Rogerio P.
    Andrade, Eduardo J. F.
    Salles, Jose L. F.
    Valadao, Carlos T.
    Monteiro, Ravena S.
    de Almeida, Gustavo Maia
    Cuadros, Marco A. S. L.
    Bastos-Filho, Teodiano F.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [17] Decentralized Data-Driven Tuning of Droop Frequency Controllers
    Santos, Allan Almeida
    Mora, Edwin
    Peters, Jan
    Steinke, Florian
    [J]. 2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 141 - 145
  • [18] FOPID Controller Tuning for Fractional FOPDT Plants subject to Design Specifications in the Frequency Domain
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Belikov, Juri
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 3502 - 3507
  • [19] Frequency-Domain Data-Driven Position-Dependent Controller Synthesis for Cartesian Robots
    Schuchert, Philippe
    Karimi, Alireza
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (04) : 1855 - 1866
  • [20] CONTROLLER SYNTHESIS USING DATA-DRIVEN CLOCKS
    AGHDASI, F
    [J]. MICROELECTRONICS JOURNAL, 1995, 26 (05) : 449 - 461