共 50 条
Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan
被引:164
|作者:
Kawakata, H
[1
]
Cho, A
Kiyama, T
Yanagidani, T
Kusunose, K
Shimada, M
机构:
[1] Kyoto Univ, Disaster Prevent Res Inst, Res Ctr Earthquake Predict, Kyoto 6110011, Japan
[2] Geol Survey Japan, Tsukuba, Ibaraki 3058567, Japan
[3] Mitsui Construct Co Ltd, Chiba 2700132, Japan
关键词:
X-ray CT scan;
faulting;
three-dimensional reconstruction;
stress drop;
triaxial testing;
uniaxial testing;
D O I:
10.1016/S0040-1951(99)00205-X
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
Observations of spatial fault development in granite undergoing compression provide new insights into the process of faulting. Dry intact Westerly granite samples were loaded under a confining pressure of 100 MPa (triaxial conditions) and 5 MPa (similar to uniaxial conditions), and the progress of faulting was controlled by maintaining the increment of circumferential displacement at a constant rate, which apparently stiffened the machine. The samples were unloaded after they experienced some degree of stress drop and were successfully recovered before faulting progressed further. A conventional medical X-ray CT scanning system was used to image the sample interiors. Three-dimensional fault systems were detected with sequential X-ray CT images. It was found that three-dimensional reconstruction by X-ray CT images yields not only three-dimensional images of the fault system, but also provides fault cross-section images with much less artificial noise (artifacts) than does direct X-ray CT imaging. Three-dimensional images show that a fault system that developed under uniaxial conditions is much more complicated than a fault system produced by triaxial conditions. In addition, the fault plane produced under uniaxial conditions is inclined at a lower angle to the maximum compressive axis than under triaxial conditions. Comparing X-ray CT images, we show that a fault nucleates locally on the sample surface just after peak stress, then develops into the final fault plane in the residual stress stage of the complete stress-strain relationship under triaxial conditions. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 305
页数:13
相关论文