Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels

被引:68
|
作者
Cheng, Mingjian [1 ,2 ]
Guo, Lixin [1 ,2 ]
Zhang, Yixin [3 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
来源
OPTICS EXPRESS | 2015年 / 23卷 / 25期
关键词
OPTICAL WAVES PROPAGATION; IRRADIANCE SCINTILLATION; PROBABILITY DENSITY; SPECTRAL MODEL; FLUCTUATIONS; ENVIRONMENT; VARIANCE; SYSTEM;
D O I
10.1364/OE.23.032606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Analytic expression of the receiver-aperture-averaged scintillation index (SI) was derived for Gaussian-beam waves propagating through non-Kolmogorov maritime atmospheric environment by establishing a generalized maritime atmospheric spectrum model. The error performance of an intensity-modulated and direct-detection (IM/DD) free-space optical (FSO) system was investigated using the derived SI and log-normal distribution. The combined effects of non-Kolmogorov power-law exponent, turbulence inner scale, structure parameter, propagation distance, receiver aperture, and wavelength were also evaluated. Results show that inner scale and power-law exponent obviously affect SI. Large wavelength and receiver aperture can mitigate the effects of turbulence. The proposed model can be evaluated ship-to-ship/shore FSO system performance. (C) 2015 Optical Society of America
引用
收藏
页码:32606 / 32621
页数:16
相关论文
共 50 条
  • [1] Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams
    Lu, Fang
    Zhao, Dan
    Liu, Chunbo
    Han, Xiang'e
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2016, 45 (07):
  • [2] Scintillation and BER for optimum sinusoidal Gaussian beams in weak non-Kolmogorov turbulence
    Gercekcioglu, Hamza
    Baykal, Yahya
    [J]. OPTICS COMMUNICATIONS, 2014, 320 : 1 - 5
  • [3] Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence
    H. T. Eyyuboğlu
    [J]. Applied Physics B, 2012, 108 : 335 - 343
  • [4] Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence
    Eyyuboglu, H. T.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 108 (02): : 335 - 343
  • [5] Spiral spectrum of Laguerre-Gaussian beams in slant non-Kolmogorov atmospheric turbulence
    Liu, Zheng
    Wei, Hongyan
    Cai, Dongmei
    Jia, Peng
    Zhang, Rong
    Li, Zhenjun
    [J]. OPTIK, 2017, 142 : 103 - 108
  • [6] Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams
    Lu Lu
    Ji Xiao-Ling
    Deng Jin-Ping
    Ma Yuan
    [J]. ACTA PHYSICA SINICA, 2014, 63 (01)
  • [7] Probability density performance of Laguerre-Gaussian beams propagating in non-Kolmogorov atmospheric turbulence
    Li, Yongxu
    Han, Yiping
    Cui, Zhiwei
    Hui, Yuanfei
    [J]. OPTIK, 2018, 157 : 170 - 179
  • [8] Spreading of partially coherent Hermite-Gaussian beams through a non-Kolmogorov turbulence
    Wu, Guohua
    Luo, Bin
    Yu, Song
    Dang, Anhong
    Zhao, Tonggang
    Guo, Hong
    [J]. OPTIK, 2011, 122 (22): : 2029 - 2033
  • [9] Propagation of Bessel Gaussian beams through non-Kolmogorov turbulence based on Rytov theory
    Wang Wanjun
    Wu Zhensen
    Shang Qingchao
    Bai Lu
    [J]. OPTICS EXPRESS, 2018, 26 (17): : 21712 - 21724
  • [10] Irradiance scintillation for Gaussian-beam wave propagating through weak non-Kolmogorov turbulence
    Cui, Linyan
    Xue, Bindang
    Cao, Lei
    Zheng, Shiling
    Xue, Wenfang
    Bai, Xiangzhi
    Cao, Xiaoguang
    Zhou, Fugen
    [J]. OPTICS EXPRESS, 2011, 19 (18): : 16872 - 16884