Propagation of Bessel Gaussian beams through non-Kolmogorov turbulence based on Rytov theory

被引:21
|
作者
Wang Wanjun [1 ]
Wu Zhensen [1 ,2 ]
Shang Qingchao [1 ]
Bai Lu [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Underst, Xian 710071, Shaanxi, Peoples R China
来源
OPTICS EXPRESS | 2018年 / 26卷 / 17期
基金
中国国家自然科学基金;
关键词
ORBITAL-ANGULAR-MOMENTUM; SPACE OPTICAL COMMUNICATION; ATMOSPHERIC-TURBULENCE; MARINE-ATMOSPHERE; INDEX; PERFORMANCE; CHANNELS; SPECTRUM; SYSTEMS; MODEL;
D O I
10.1364/OE.26.021712
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The average intensity of the Bessel Gaussian beams propagating through the non-Kolmogorov turbulence based on Rytov theory is derived without the quantic approximation in this paper. Therefore, this result is comparatively more accurate than that calculated by the extended Huygens-Fresnel principle, especially when the inner scale of the turbulence is small or the beams width is large. There is an interesting finding which does not exist in Gaussian beams propagation. It is the intensity variation with the inner scale that displays different behaviors when the beams width is different. Moreover, there will be some beams with specific source width, whose average intensities on the axis do not affected by the turbulence after the inner scale increasing to a certain value as their turbulence perturbation is zero. And the beams here become to the flat top beams. In summary, this paper provides an accurate method for the investigation of the Bessel Gaussian beams propagation through the non-Kolmogorov turbulence and improves the theoretical basis for the applications. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:21712 / 21724
页数:13
相关论文
共 50 条
  • [1] Quadratic approximation of Bessel Gaussian beams propagation through non-Kolmogorov and marine atmosphere
    Wang Wanjun
    Wu Zhensen
    Bai Lu
    ENVIRONMENTAL EFFECTS ON LIGHT PROPAGATION AND ADAPTIVE SYSTEMS, 2018, 10787
  • [2] Propagation of partially coherent Bessel-Gaussian beams carrying optical vortices in non-Kolmogorov turbulence
    Qin, Zhiyuan
    Tao, Rumao
    Zhou, Pu
    Xu, Xiaojun
    Liu, Zejin
    OPTICS AND LASER TECHNOLOGY, 2014, 56 : 182 - 188
  • [3] Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence
    Zhi, Dong
    Tao, Rumao
    Zhou, Pu
    Ma, Yanxing
    Wu, Wuming
    Wang, Xiaolin
    Si, Lei
    OPTICS COMMUNICATIONS, 2017, 387 : 157 - 165
  • [4] Propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence
    何雪梅
    吕百达
    Chinese Physics B, 2011, 20 (09) : 252 - 260
  • [5] Propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence
    He Xue-Mei
    Lu Bai-Da
    CHINESE PHYSICS B, 2011, 20 (09)
  • [6] Propagation factors of standard and elegant Laguerre Gaussian beams in non-Kolmogorov turbulence
    Xu, Yonggen
    Tian, Huanhuan
    Feng, Hao
    Du, Quan
    Dan, Youquan
    OPTIK, 2016, 127 (22): : 10999 - 11008
  • [7] Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence
    Li, Xiaoqing
    Ji, Xiaoling
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (01) : 172 - 182
  • [8] Beam propagation factor of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence
    Wu, Guohua
    Zhao, Tonggang
    Ren, Jianhua
    Zhang, Junyi
    Zhang, Xiaolei
    Li, Weihai
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (07): : 1225 - 1228
  • [9] Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence
    Wang, Xiaoyang
    Yao, Mingwu
    Qiu, Zhiliang
    Yi, Xiang
    Liu, Zengji
    OPTICS EXPRESS, 2015, 23 (10): : 12508 - 12523
  • [10] Optical propagation through non-Kolmogorov turbulence
    Tang Hua
    Ou BaoLin
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (04) : 1 - 6