The Cayley isomorphism property for the group C25 x Cp

被引:0
|
作者
Ryabov, Grigory [1 ,2 ]
机构
[1] Sobolev Inst Math, 4 Acad Koptyug Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova St, Novosibirsk 630090, Russia
关键词
Isomorphisms; DCI-groups; Schur rings; ELEMENTARY ABELIAN-GROUP; ADAMS CONJECTURE; SCHUR RINGS; GRAPHS;
D O I
10.26493/1855-3974.2348.f42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic if and only if their connection sets are conjugate by a group automorphism. We prove that the group C-2(5) x C-p, where p is a prime, is a DCI-group if and only if p not equal 2. Together with the previously obtained results, this implies that a group G of order 32p, where p is a prime, is a DCI-group if and only if p not equal 2 and G similar or equal to C-2(5) x C-p.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条