On first order fuzzy Ricatti difference equation

被引:30
|
作者
Zhang, Qianhong [1 ]
Yang, Lihui [2 ]
Liao, Daixi [3 ]
机构
[1] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Guizhou, Peoples R China
[2] Hunan City Univ, Dept Math, Yiyang 413000, Hunan, Peoples R China
[3] Hunan Inst Technol, Dept Math & Phys, Hengyang 421002, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy difference equation; Boundedness; Persistence; Equilibrium point; Asymptotic behavior; Nonoscillation; SYSTEM; BEHAVIOR;
D O I
10.1016/j.ins.2014.02.086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the existence, the boundedness and the asymptotic behavior of the positive solutions to a first order fuzzy Ricatti difference equation Xn+1 = A + X-n/B + X-n , n = 0,1,... where {X-n} is a sequence of positive fuzzy numbers, A, B and the initial value x(0) are positive fuzzy numbers. Moreover an example is given to demonstrate the effectiveness of the results obtained. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 236
页数:11
相关论文
共 50 条
  • [31] On the dynamics of a higher-order fuzzy difference equation with rational terms
    İbrahim Yalçınkaya
    Hamdy El-Metwally
    Mustafa Bayram
    Durhasan Turgut Tollu
    Soft Computing, 2023, 27 : 10469 - 10479
  • [32] Dynamical behavior of a third-order rational fuzzy difference equation
    Qianhong Zhang
    Jingzhong Liu
    Zhenguo Luo
    Advances in Difference Equations, 2015
  • [33] A New Approach for Solving First Order Fuzzy Differential Equation
    Allahviranloo, Tofigh
    Salahshour, Soheil
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: APPLICATIONS, PT II, 2010, 81 : 522 - 531
  • [34] Application of characteristic equation of first order neutral impulsive difference equations
    Chhatria, Gokula Nanda
    JOURNAL OF ANALYSIS, 2021, 29 (01): : 191 - 206
  • [35] Global dynamics of cubic second order difference equation in the first quadrant
    Jasmin Bektešević
    Mustafa RS Kulenović
    Esmir Pilav
    Advances in Difference Equations, 2015
  • [36] Application of characteristic equation of first order neutral impulsive difference equations
    Gokula Nanda Chhatria
    The Journal of Analysis, 2021, 29 : 191 - 206
  • [37] Global dynamics of quadratic second order difference equation in the first quadrant
    Bektesevic, J.
    Kulenovic, M. R. S.
    Pilav, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 50 - 65
  • [38] Global dynamics of cubic second order difference equation in the first quadrant
    Bektesevic, Jasmin
    Kulenovic, Mustafa R. S.
    Pilav, Esmir
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [39] On the Hyers-Ulam Stability of the First-Order Difference Equation
    Jung, Soon-Mo
    Nam, Young Woo
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [40] On a fuzzy logistic difference equation
    1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (13):