NMR-assisted protein structure prediction with MELDxMD

被引:19
|
作者
Robertson, James C. [1 ]
Nassar, Roy [1 ,2 ]
Liu, Cong [1 ,2 ]
Brini, Emiliano [1 ]
Dill, Ken A. [1 ,2 ,3 ]
Perez, Alberto [4 ]
机构
[1] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
CASP13; MELD; molecular dynamics; NMR; protein structure prediction; SIDE-CHAIN; BACKBONE; PARAMETERS; SEQUENCE; MODELS; RPF;
D O I
10.1002/prot.25788
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe the performance of MELD-accelerated molecular dynamics (MELDxMD) in determining protein structures in the NMR-data-assisted category in CASP13. Seeded from web server predictions, MELDxMD was found best in the NMR category, over 17 targets, outperforming the next-best groups by a factor of similar to 4 in z-score. MELDxMD gives ensembles, not single structures; succeeds on a 326-mer, near the current upper limit for NMR structures; and predicts structures that match experimental residual dipolar couplings even though the only NMR-derived data used in the simulations was NOE-based ambiguous atom-atom contacts and backbone dihedrals. MELD can use noisy and ambiguous experimental information to reduce the MD search space. We believe MELDxMD is a promising method for determining protein structures from NMR data.
引用
收藏
页码:1333 / 1340
页数:8
相关论文
共 50 条
  • [31] Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures
    Mikael Bodén
    Zheng Yuan
    Timothy L Bailey
    BMC Bioinformatics, 7
  • [32] Blind protein structure prediction with physics and ambiguous data: CASP and CASP-NMR
    Perez, Alberto
    Liu, Cong
    Brini, Emiliano
    Robertson, James
    Nassar, Roy
    Dill, Ken
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [33] Imaging active site chemistry with protons: Modeling the transition states into and out of the tryptophan synthase a-aminoacrylate intermediate with NMR-assisted crystallography
    Mueller, Leonard
    PROTEIN SCIENCE, 2021, 30 : 108 - 108
  • [34] Protein structure prediction
    Deng Hai-You
    Jia Ya
    Zhang Yang
    ACTA PHYSICA SINICA, 2016, 65 (17)
  • [35] Protein structure prediction
    Deng, Haiyou
    Jia, Ya
    Zhang, Yang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (18):
  • [36] Prediction of protein structure
    Shortle, D
    CURRENT BIOLOGY, 2000, 10 (02) : R49 - R51
  • [37] Prediction of protein structure
    Kretsinger, RH
    Ison, RE
    Hovmöller, S
    NUMERICAL COMPUTER METHODS, PT D, 2004, 383 : 1 - +
  • [38] Protein structure prediction
    Benner, SA
    Geroff, DL
    Rozzell, JD
    SCIENCE, 1996, 274 (5292) : 1448 - 1449
  • [39] Protein structure prediction
    Al-Lazikani, B
    Jung, J
    Xiang, ZX
    Honig, B
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2001, 5 (01) : 51 - 56
  • [40] Protein structure prediction
    Westhead, DR
    Thornton, JM
    CURRENT OPINION IN BIOTECHNOLOGY, 1998, 9 (04) : 383 - 389