A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data

被引:49
|
作者
Pettitt, AN
Weir, IS
Hart, AG
机构
[1] Univ Queensland, Sch Math Sci, Brisbane, Qld, Australia
[2] Univ W England, Dept Math, Bristol BS16 1QY, Avon, England
基金
澳大利亚研究理事会;
关键词
Bayesian analysis; binary data; conditional autoregression; Markov chain Monte Carlo; multivariate data; spatial statistics; spatio-temporal;
D O I
10.1023/A:1020792130229
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Gaussian conditional autoregressive (CAR) formulation is presented that permits the modelling of the spatial dependence and the dependence between multivariate random variables at irregularly spaced sites so capturing some of the modelling advantages of the geostatistical approach. The model benefits not only from the explicit availability of the full conditionals but also from the computational simplicity of the precision matrix determinant calculation using a closed form expression involving the eigenvalues of a precision matrix submatrix. The introduction of covariates into the model adds little computational complexity to the analysis and thus the method can be straightforwardly extended to regression models. The model, because of its computational simplicity, is well suited to application involving the fully Bayesian analysis of large data sets involving multivariate measurements with a spatial ordering. An extension to spatio-temporal data is also considered. Here, we demonstrate use of the model in the analysis of bivariate binary data where the observed data is modelled as the sign of the hidden CAR process. A case study involving over 450 irregularly spaced sites and the presence or absence of each of two species of rain forest trees at each site is presented; Markov chain Monte Carlo (MCMC) methods are implemented to obtain posterior distributions of all unknowns. The MCMC method works well with simulated data and the tree biodiversity data set.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 50 条
  • [31] Detecting dominant changes in irregularly sampled multivariate water quality data sets
    Lehr, Christian
    Dannowski, Ralf
    Kalettka, Thomas
    Merz, Christoph
    Schroeder, Boris
    Steidl, Joerg
    Lischeid, Gunnar
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (08) : 4401 - 4424
  • [32] An irregularly spaced ARMA(1,1) model and an application to contamination data
    Bahamonde, Natalia
    Bardet, Jean-Marc
    Bertin, Karine
    Doukhan, Paul
    Maddanu, Federico
    STATISTICS, 2025, 59 (01) : 113 - 135
  • [33] MULTIVARIATE INTERPOLATION OF LARGE SETS OF SCATTERED DATA
    RENKA, RJ
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (02): : 139 - 148
  • [34] Visualization of Diversity in Large Multivariate Data Sets
    Pham, Tuan
    Hess, Rob
    Ju, Crystal
    Zhang, Eugene
    Metoyer, Ronald
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1053 - 1062
  • [35] A MODEL FOR LARGE MULTIVARIATE SPATIAL DATA SETS
    Kleiber, William
    Nychka, Douglas
    Bandyopadhyay, Soutir
    STATISTICA SINICA, 2019, 29 (03) : 1085 - 1104
  • [36] Gaussian Process Regression for Structured Data Sets
    Belyaev, Mikhail
    Burnaev, Evgeny
    Kapushev, Yermek
    STATISTICAL LEARNING AND DATA SCIENCES, 2015, 9047 : 106 - 115
  • [37] A Bayesian conditional autoregressive geometric process model for range data
    Chan, J. S. K.
    Lam, C. P. Y.
    Yu, P. L. H.
    Choy, S. T. B.
    Chen, C. W. S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) : 3006 - 3019
  • [38] Foreground modelling via Gaussian process regression: an application to HERA data
    Ghosh, Abhik
    Mertens, Florent
    Bernardi, Gianni
    Santos, Mario G.
    Kern, Nicholas S.
    Carilli, Christopher L.
    Grobler, Trienko L.
    Koopmans, Leon V. E.
    Jacobs, Daniel C.
    Liu, Adrian
    Parsons, Aaron R.
    Morales, Miguel F.
    Aguirre, James E.
    Dillon, Joshua S.
    Hazelton, Bryna J.
    Smirnov, Oleg M.
    Gehlot, Bharat K.
    Matika, Siyanda
    Alexander, Paul
    Ali, Zaki S.
    Beardsley, Adam P.
    Benefo, Roshan K.
    Billings, Tashalee S.
    Bowman, Judd D.
    Bradley, Richard F.
    Cheng, Carina
    Chichura, Paul M.
    DeBoer, David R.
    Acedo, Eloy de Lera
    Ewall-Wice, Aaron
    Fadana, Gcobisa
    Fagnoni, Nicolas
    Fortino, Austin F.
    Fritz, Randall
    Furlanetto, Steve R.
    Gallardo, Samavarti
    Glendenning, Brian
    Gorthi, Deepthi
    Greig, Bradley
    Grobbelaar, Jasper
    Hickish, Jack
    Josaitis, Alec
    Julius, Austin
    Igarashi, Amy S.
    Kariseb, MacCalvin
    Kohn, Saul A.
    Kolopanis, Matthew
    Lekalake, Telalo
    Loots, Anita
    MacMahon, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (03) : 2813 - 2826
  • [39] Continuous-time modelling of irregularly spaced panel data using a cubic spline model
    Chow, Sy-Miin
    Zhang, Guangjian
    STATISTICA NEERLANDICA, 2008, 62 (01) : 131 - 154
  • [40] Efficient Computation of Gaussian Process Regression for Large Spatial Data Sets by Patching Local Gaussian Processes
    Park, Chiwoo
    Huang, Jianhua Z.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17