Observation of chiral edge states in gapped nanomechanical graphene

被引:50
|
作者
Xi, Xiang [1 ]
Ma, Jingwen [1 ]
Wan, Shuai [2 ,3 ]
Dong, Chun-Hua [2 ,3 ]
Sun, Xiankai [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE;
D O I
10.1126/sciadv.abe1398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging in diverse areas of physics, edge states have been exploited as an efficient strategy of manipulating electrons, photons, and phonons for next-generation hybrid electro-optomechanical circuits. Among various edge states, gapless chiral edge states harnessing quantum spin/valley Hall effects in graphene or graphene-like materials are especially unique. Here, we report on an experimental demonstration of chiral edge states in gapped "nanomechanical graphene"-a honeycomb lattice of free-standing silicon nitride nanomechanical membranes with broken spatial inversion symmetry. These chiral edge states can emerge from the conventional flat-band edge states by tuning the on-site boundary potentials. We experimentally demonstrated that they are backscattering-immune against sharp bends and exhibit the "valley-momentum locking" effect. We further realized smooth transition between the chiral edge states and the well-known valley kink states. Our results open the door to experimental investigation of exotic graphene-related physics in the very-high-frequency integrated nanomechanical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Topological phase transition in chiral graphene nanoribbons: from edge bands to end states
    Jingcheng Li
    Sofia Sanz
    Nestor Merino-Díez
    Manuel Vilas-Varela
    Aran Garcia-Lekue
    Martina Corso
    Dimas G. de Oteyza
    Thomas Frederiksen
    Diego Peña
    Jose Ignacio Pascual
    Nature Communications, 12
  • [32] Electrical dipole on gapped graphene: Bound states and atomic collapse
    Van Pottelberge, R.
    Van Duppen, B.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [33] Observation of the Edge Modes in Photonic Graphene
    Wang, J.
    Shao, Y.
    Hang, Z. H.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 812 - 816
  • [34] Topological phase transition in chiral graphene nanoribbons: from edge bands to end states
    Li, Jingcheng
    Sanz, Sofia
    Merino-Diez, Nestor
    Vilas-Varela, Manuel
    Garcia-Lekue, Aran
    Corso, Martina
    de Oteyza, Dimas G.
    Frederiksen, Thomas
    Pena, Diego
    Ignacio Pascual, Jose
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [35] Observation of edge solitons in photonic graphene
    Zhaoyang Zhang
    Rong Wang
    Yiqi Zhang
    Yaroslav V. Kartashov
    Feng Li
    Hua Zhong
    Hua Guan
    Kelin Gao
    Fuli Li
    Yanpeng Zhang
    Min Xiao
    Nature Communications, 11
  • [36] Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, Dirac fermions and edge states
    Hatsugai, Y.
    SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) : 1061 - 1067
  • [37] Observation of edge solitons in photonic graphene
    Zhang, Zhaoyang
    Wang, Rong
    Zhang, Yiqi
    Kartashov, Yaroslav, V
    Li, Feng
    Zhong, Hua
    Guan, Hua
    Gao, Kelin
    Li, Fuli
    Zhang, Yanpeng
    Xiao, Min
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [38] Gapped Chiral Fermions
    Razamat, Shlomo S.
    Tong, David
    PHYSICAL REVIEW X, 2021, 11 (01):
  • [39] Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing
    Parappurath, Nikhil
    Alpeggiani, Filippo
    Kuipers, L.
    Verhagen, Ewold
    SCIENCE ADVANCES, 2020, 6 (10):
  • [40] Dynamic Observation of Topological Soliton States in a Programmable Nanomechanical Lattice
    Lin, Shaochun
    Zhang, Liang
    Tian, Tian
    Duan, Chang-Kui
    Du, Jiangfeng
    NANO LETTERS, 2021, 21 (02) : 1025 - 1031