Observation of chiral edge states in gapped nanomechanical graphene

被引:50
|
作者
Xi, Xiang [1 ]
Ma, Jingwen [1 ]
Wan, Shuai [2 ,3 ]
Dong, Chun-Hua [2 ,3 ]
Sun, Xiankai [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
[2] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE;
D O I
10.1126/sciadv.abe1398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emerging in diverse areas of physics, edge states have been exploited as an efficient strategy of manipulating electrons, photons, and phonons for next-generation hybrid electro-optomechanical circuits. Among various edge states, gapless chiral edge states harnessing quantum spin/valley Hall effects in graphene or graphene-like materials are especially unique. Here, we report on an experimental demonstration of chiral edge states in gapped "nanomechanical graphene"-a honeycomb lattice of free-standing silicon nitride nanomechanical membranes with broken spatial inversion symmetry. These chiral edge states can emerge from the conventional flat-band edge states by tuning the on-site boundary potentials. We experimentally demonstrated that they are backscattering-immune against sharp bends and exhibit the "valley-momentum locking" effect. We further realized smooth transition between the chiral edge states and the well-known valley kink states. Our results open the door to experimental investigation of exotic graphene-related physics in the very-high-frequency integrated nanomechanical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Observation of chiral quantum-Hall edge states in graphene
    Ki, Dong-Keun
    Jo, Sanghyun
    Lee, Hu-Jong
    APPLIED PHYSICS LETTERS, 2009, 94 (16)
  • [2] Edge States in Graphene: From Gapped Flat-Band to Gapless Chiral Modes
    Yao, Wang
    Yang, Shengyuan A.
    Niu, Qian
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [3] Floquet chiral edge states in graphene
    Perez-Piskunow, P. M.
    Usaj, Gonzalo
    Balseiro, C. A.
    Foa Torres, L. E. F.
    PHYSICAL REVIEW B, 2014, 89 (12):
  • [4] Observation of unconventional edge states in 'photonic graphene'
    Plotnik Y.
    Rechtsman M.C.
    Song D.
    Heinrich M.
    Zeuner J.M.
    Nolte S.
    Lumer Y.
    Malkova N.
    Xu J.
    Szameit A.
    Chen Z.
    Segev M.
    Nature Materials, 2014, 13 (1) : 57 - 62
  • [5] Observation of unconventional edge states in 'photonic graphene'
    Plotnik, Yonatan
    Rechtsman, Mikael C.
    Song, Daohong
    Heinrich, Matthias
    Zeuner, Julia M.
    Nolte, Stefan
    Lumer, Yaakov
    Malkova, Natalia
    Xu, Jingjun
    Szameit, Alexander
    Chen, Zhigang
    Segev, Mordechai
    NATURE MATERIALS, 2014, 13 (01) : 57 - 62
  • [6] Observation of photonic chiral edge states in penrose quasicrystals
    Yang, Xucheng
    Wang, Ziyao
    Gao, Hengjun
    Yang, Linyuan
    Meng, Yan
    Xi, Xiang
    Shum, Perry Ping
    Gao, Zhen
    OPTICAL MATERIALS EXPRESS, 2024, 14 (06): : 1590 - 1595
  • [7] Theory of magnetic edge states in chiral graphene nanoribbons
    Yazyev, Oleg V.
    Capaz, Rodrigo B.
    Louie, Steven G.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [8] Spatially resolving edge states of chiral graphene nanoribbons
    Tao, Chenggang
    Jiao, Liying
    Yazyev, Oleg V.
    Chen, Yen-Chia
    Feng, Juanjuan
    Zhang, Xiaowei
    Capaz, Rodrigo B.
    Tour, James M.
    Zettl, Alex
    Louie, Steven G.
    Dai, Hongjie
    Crommie, Michael F.
    NATURE PHYSICS, 2011, 7 (08) : 616 - 620
  • [9] Spatially resolving edge states of chiral graphene nanoribbons
    Tao C.
    Jiao L.
    Yazyev O.V.
    Chen Y.-C.
    Feng J.
    Zhang X.
    Capaz R.B.
    Tour J.M.
    Zettl A.
    Louie S.G.
    Dai H.
    Crommie M.F.
    Nature Physics, 2011, 7 (8) : 616 - 620
  • [10] Edge magnetization and local density of states in chiral graphene nanoribbons
    Carvalho, A. R.
    Warnes, J. H.
    Lewenkopf, C. H.
    PHYSICAL REVIEW B, 2014, 89 (24):