Bottom-Up Synthesis of Metalated Carbyne

被引:107
|
作者
Sun, Qiang [1 ]
Cai, Liangliang [1 ]
Wang, Shiyong [2 ]
Widmer, Roland [2 ]
Ju, Huanxin [3 ]
Zhu, Junfa [3 ]
Li, Lei [4 ]
He, Yunbin [4 ]
Ruffieux, Pascal [2 ]
Fasel, Roman [2 ,5 ]
Xu, Wei [1 ]
机构
[1] Tongji Univ, Coll Mat Sci & Engn, Tongji Aarhus Joint Res Ctr Nanostruct & Funct Na, Caoan Rd 4800, Shanghai 201804, Peoples R China
[2] Empa Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[4] Hubei Univ, Fac Mat Sci & Engn, Key Lab Green Preparat & Applicat Funct Mat, Minist Educ, Wuhan 430062, Peoples R China
[5] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
ORGANOMETALLIC INTERMEDIATE; TERMINAL ALKYNES; GRAPHENE FILMS; SURFACE; COVALENT; CYCLODEHYDROGENATION; SUPERCONDUCTIVITY; POLYYNES; CU(110); MODEL;
D O I
10.1021/jacs.5b10725
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Because of stability issues, carbyne, a one-dimensional chain of carbon atoms, has been much less investigated than other recent carbon allotropes such as graphene. Beyond that, metalation of such a linear carbon nanostructure with regularly distributed metal atoms is even more challenging. Here we report a successful on surface synthesis of metalated carbyne chains by dehydrogenative coupling of ethyne molecules and copper atoms on a Cu(110) surface under ultrahigh-vacuum conditions. The length of the fabricated metalated carbyne chains was found to extend to the submicron scale (with the longest ones up to similar to 120 nm). We expect that the herein-developed on-surface synthesis strategy for the efficient synthesis of organometallic carbon-based nano structures will inspire more extensive experimental investigations of their physicochemical properties and explorations of their potential with respect to technological applications.
引用
收藏
页码:1106 / 1109
页数:4
相关论文
共 50 条
  • [31] Bottom-Up Synthesis of Anatase Nanoparticles with Graphene Domains
    Mogilevsky, Gregory
    Hartman, Olga
    Emmons, Erik D.
    Balboa, Alex
    DeCoste, Jared B.
    Schindler, Bryan J.
    Iordanov, Ivan
    Karwacki, Christopher J.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 10638 - 10648
  • [32] Research progress in "bottom-up" chemical synthesis of nanographenes
    Zhang Y.
    Zhang B.
    Zhang J.
    Li K.
    Dang Y.
    Duan Y.
    Huagong Xuebao/CIESC Journal, 2020, 71 (06): : 2628 - 2642
  • [33] Bottom-up innovation
    Sharkey, Noel
    NATURE, 2014, 516 (7529) : 36 - 36
  • [34] BOTTOM-UP BIOLOGY
    不详
    NATURE, 2018, 563 (7730) : 171 - 171
  • [35] Bottom-up synthesis of highly soluble carbon materials
    Syun Gohda
    Yasuhiro Yamada
    Masatoshi Murata
    Makoto Saito
    Shuhei Kanazawa
    Hironobu Ono
    Satoshi Sato
    Journal of Materials Science, 2020, 55 : 11808 - 11828
  • [36] Bottom-Up Synthesis of Multiply Fused PdII Anthriporphyrinoids
    Ge, Xinrun
    Rao, Yutao
    Xu, Ling
    Zhou, Mingbo
    Kurosak, Ryo
    Aratani, Naoki
    Osuka, Atsuhiro
    Song, Jianxin
    ACS CENTRAL SCIENCE, 2022,
  • [37] Bottom-up synthesis of highly soluble carbon materials
    Gohda, Syun
    Yamada, Yasuhiro
    Murata, Masatoshi
    Saito, Makoto
    Kanazawa, Shuhei
    Ono, Hironobu
    Sato, Satoshi
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (26) : 11808 - 11828
  • [38] The "bottom-up" synthesis and applications of persistent luminescence nanoparticles
    Yu, Nuo
    Li, Yang
    Li, Zhanjun
    Han, Gang
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (07) : 757 - 758
  • [39] Synthesis of Supported Ga Nanodrops by a Bottom-up Route
    Armbruester, Marc
    Cardoso-Gil, Raul
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2015, 641 (8-9): : 1453 - 1458
  • [40] Top-down bottom-up graphene synthesis
    Zhang, Zishuai
    Fraser, Alison
    Ye, Siyu
    Merle, Geraldine
    Barralet, Jake
    NANO FUTURES, 2019, 3 (04)