Triangle singularities in (B)over-bar0 → χc1K- π+ relevant to Z1 (4050) and Z2 (4250)

被引:15
|
作者
Nakamura, Satoshi X. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[2] State Key Lab Particle Detect & Elect IHEP USTC, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PENTAQUARK;
D O I
10.1103/PhysRevD.100.011504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Z(1) (4050) and Z(2) (4250) observed in (B) over bar (0) -> chi(c1) K- pi(+) by the Belle Collaboration are candidates of charged charmoniumlike states that minimally include two quarks and two antiquarks. While Z(1) (4050) and Z(2) (4250) have been interpreted as tetraquark states previously, we propose a completely different scenario based on a kinematical effect called the triangle singularity. We demonstrate that the triangle singularities cause in the chi(c1) pi(+) invariant mass distribution resonance like bumps that fit very well the Belle data. If these bumps are simulated by the Z(1) (4050) and Z(2) (4250) resonance excitations, the spin-parity of them are predicted to be 1(-) for Z(1) (4050) and 1(+) or 1(-) for Z(2) (4250). The bump corresponding to Z(1) (4050) has a highly asymmetric shape, which the Belle data exactly indicate. We show that the asymmetric shape originates from an interplay between the triangle singularity and the opening of the X (3872)pi(+) channel near the triangle-singularity energy. This characteristic lineshape could be used to discriminate different interpretations of Z(1) (4050). An interesting prediction from interpreting Z(1) (4050) and Z(2) (4250) as the triangle singularities is that similar bumps caused by the same mechanisms possibly appear also in (B) over bar (0) -> J/psi K- pi(+) data; the already observed Z(c) (4200) corresponds to Z(2) (4250) of J(P) = 1(+).
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Study of characteristic "dipole" functions A(z1, z2) and B(z1, z2) for real and imaginary parts of straight classical path S matrix for the widths and shifts of isolated neutral atom lines in plasmas
    Ndeye, M
    Tall, MS
    Diatta, CS
    Diedhiou, I
    PHYSICA SCRIPTA, 2001, 64 (05): : 462 - 466
  • [12] K-shell X-ray production in Silicon (Z2=14) by (1 ≤ Z1 ≤ 53) slow ions
    Lei, Yu
    Zhao, Yongtao
    Zhou, Xianming
    Cheng, Rui
    Wang, Xing
    Sun, Yuanbo
    Liu, Shidong
    Ren, Jieru
    Wang, Yuyu
    Zhang, Xiaoan
    Li, Yaozong
    Liang, Changhui
    Xiao, Guoqing
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 370 : 10 - 13
  • [13] 砂轮架可沿z1、z2、B、x轴移动的外圆磨床
    秦之旭
    刘炳文
    刘海亮
    制造技术与机床, 2016, (08) : 98 - 99
  • [14] The region of values of the system {c2, f(z1), f(z2)} in the class of typically real functions
    Goluzina E.G.
    Journal of Mathematical Sciences, 2010, 166 (2) : 128 - 133
  • [15] On Certain Arithmetic Functions (M)over-tilde (s; z1, z2) Associated with Global Fields: Analytic Properties
    Ihara, Yasutaka
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) : 257 - 305
  • [16] Production of X(4160), Y(3940) and Z(3930) in the (B)over-bar0 → (K)over-bar*0X(YZ) and (B)over-bars0 → φX(YZ) Decays
    Liang, Wei-Hong
    Molina, R.
    Xie, Ju-Jun
    Doring, M.
    Oset, E.
    XVITH INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY (HADRON2015), 2016, 1735
  • [17] STABILITY TEST FOR B(z1, z2) equals SIGMA m equals 0 yields 2 SIGMA n equals 0 yields 2bmnz1mz2n IN CLOSED FORM.
    Zou, Mou-Yan
    Unbehauen, R.
    Electronics Letters, 1986, 22 (11) : 618 - 619
  • [18] On Some Branched Continued Fraction Expansions for Horn's Hypergeometric Function H4(a,b;c,d;z1,z2) Ratios
    Antonova, Tamara
    Dmytryshyn, Roman
    Lutsiv, Ilona-Anna
    Sharyn, Serhii
    AXIOMS, 2023, 12 (03)
  • [19] Measurements of the branching fractions of ψ(3686) → (Σ)over-bar0Λ + c.c: and χcJ(J=0,1,2) → Λ(Λ)over-bar
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Ahmed, S.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, X. H.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Chelkov, G.
    Chen, D. Y.
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, X. R.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Cibinetto, G.
    Cossio, F.
    Cui, X. F.
    Dai, H. L.
    Dai, X. C.
    Dbeyssi, A.
    de Boer, R. E.
    Dedovich, D.
    PHYSICAL REVIEW D, 2021, 103 (11)
  • [20] The decays of B+ → (D)over-bar0 + DsJ+(2S) and B+ → (D)over-bar0 + DsJ+(1D)
    Wang, Guo-Li
    Zhang, Jin-Mei
    Wang, Zhi-Hui
    PHYSICS LETTERS B, 2009, 681 (04) : 326 - 329