Triangle singularities in (B)over-bar0 → χc1K- π+ relevant to Z1 (4050) and Z2 (4250)

被引:15
|
作者
Nakamura, Satoshi X. [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[2] State Key Lab Particle Detect & Elect IHEP USTC, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
PENTAQUARK;
D O I
10.1103/PhysRevD.100.011504
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Z(1) (4050) and Z(2) (4250) observed in (B) over bar (0) -> chi(c1) K- pi(+) by the Belle Collaboration are candidates of charged charmoniumlike states that minimally include two quarks and two antiquarks. While Z(1) (4050) and Z(2) (4250) have been interpreted as tetraquark states previously, we propose a completely different scenario based on a kinematical effect called the triangle singularity. We demonstrate that the triangle singularities cause in the chi(c1) pi(+) invariant mass distribution resonance like bumps that fit very well the Belle data. If these bumps are simulated by the Z(1) (4050) and Z(2) (4250) resonance excitations, the spin-parity of them are predicted to be 1(-) for Z(1) (4050) and 1(+) or 1(-) for Z(2) (4250). The bump corresponding to Z(1) (4050) has a highly asymmetric shape, which the Belle data exactly indicate. We show that the asymmetric shape originates from an interplay between the triangle singularity and the opening of the X (3872)pi(+) channel near the triangle-singularity energy. This characteristic lineshape could be used to discriminate different interpretations of Z(1) (4050). An interesting prediction from interpreting Z(1) (4050) and Z(2) (4250) as the triangle singularities is that similar bumps caused by the same mechanisms possibly appear also in (B) over bar (0) -> J/psi K- pi(+) data; the already observed Z(c) (4200) corresponds to Z(2) (4250) of J(P) = 1(+).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Search for the Z1(4050)+ and Z2(4250)+ states in (B)over-bar0 → χc1K-π+ and B+ → χc1KS0π+
    Lees, J. P.
    Poireau, V.
    Tisserand, V.
    Garra Tico, J.
    Grauges, E.
    Martinelli, M.
    Milanes, D. A.
    Palano, A.
    Pappagallo, M.
    Eigen, G.
    Stugu, B.
    Brown, D. N.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Lynch, G.
    Koch, H.
    Schroeder, T.
    Asgeirsson, D. J.
    Hearty, C.
    Mattison, T. S.
    McKenna, J. A.
    Khan, A.
    Blinov, V. E.
    Buzykaev, A. R.
    Druzhinin, V. P.
    Golubev, V. B.
    Kravchenko, E. A.
    Onuchin, A. P.
    Serednyakov, S. I.
    Skovpen, Yu. I.
    Solodov, E. P.
    Todyshev, K. Yu.
    Yushkov, A. N.
    Bondioli, M.
    Kirkby, D.
    Lankford, A. J.
    Mandelkern, M.
    Stoker, D. P.
    Atmacan, H.
    Gary, J. W.
    Liu, F.
    Long, O.
    Vitug, G. M.
    Campagnari, C.
    Hong, T. M.
    Kovalskyi, D.
    Richman, J. D.
    West, C. A.
    Eisner, A. M.
    Kroseberg, J.
    PHYSICAL REVIEW D, 2012, 85 (05):
  • [2] Zc(4430), Zc(4200), Z1(4050), and Z2(4250) as triangle singularities
    Nakamura, Satoshi X.
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON MESON-NUCLEON PHYSICS AND THE STRUCTURE OF THE NUCLEON, 2020, 2249
  • [3] THE SOLUTION OF THE TWO-DIMENSIONAL POLYNOMIAL EQUATION B(Z1,Z2)F(Z1,Z2)+A(Z1,Z2)G(Z1,Z2)=H(Z1,Z2)
    LAI, YS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (05): : 542 - 544
  • [4] 域D={z=(z1,z2)∈C2:|z1|4+|z2|<1}的Ber
    林萍
    厦门大学学报(自然科学版), 1994, (01) : 17 - 21
  • [5] 域D={z=(z1,z2)∈C2:|z1|+|z2|<1}的解析自同
    童武
    厦门大学学报(自然科学版), 1994, (04) : 449 - 452
  • [6] SMITH FORMS OVER R[Z1,Z2]
    LEE, EB
    ZAK, SH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) : 115 - 118
  • [7] SMITH FORMS OVER R[Z1, Z2] - COMMENT
    PRZYLUSKI, KM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) : 1131 - 1131
  • [8] POLYNOMIAL ARRAY FOR F(Z1, Z2) ON VERTICAL-BAR-Z1-VERTICAL-BAR = 1 AND 2-D FILTER STABILITY TEST
    HU, XH
    YEE, HS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (06) : 1579 - 1581
  • [9] THE SIMPLIFIED DERIVATION OF THE COMPLETION THEOREM TO A UNIMODULAR MATRIX OVER R[Z1, Z2]
    ZAK, SH
    LEE, EB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (02) : 161 - 162
  • [10] Theoretical study in the (B)over-bar0 → J/ψ(K)over-bar*0K0 and (B)over-bar0 → J/ψf1(1285) decays
    He, DaZhuang
    Luo, Xuan
    Xie, YiLing
    Sun, Hao
    PHYSICAL REVIEW D, 2021, 103 (09)