On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip

被引:33
|
作者
Zhu, Xiaoshan [1 ]
Ahn, Chong H.
机构
[1] Univ Cincinnati, Dept Elect & Comp Engn & Comp Sci, MicroSyst & BioMEMS Lab, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Biomed Engn, Cincinnati, OH 45221 USA
[3] Univ Cincinnati, Ctr BioMEMS & Nanobiosyst, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
bioelectronic complimentary metal-oxide-semiconductor (CMOS) chip; electrochemical analysis; nanoelectrodes; reversible redox species;
D O I
10.1109/JSEN.2006.881351
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An electrochemical microanalysis system for reversible redox species determination has been presented. This system consists of a nanoelectrochemical sensor and a complimentary metal-oxide-semiconductor (CMOS) chip for sensor signal interfacing and conditioning. The nanoelectrochemical sensor is an interdigitated array nanoelectrode fabricated using e-beam lithography and ultraviolet lithography. The CMOS chip is designed and fabricated to realize the electrochemical analysis method of sensing, which is a switch-based method. Using this switch-based method, the potential dynamics of the nanoelectrodes is recorded to evaluate the species concentration. Experimental results have shown that the detection limit of this microanalysis system on reversible redox species is in the range of 1-10 nM.
引用
收藏
页码:1280 / 1286
页数:7
相关论文
共 50 条
  • [1] CMOS-based On-chip Electrochemical Sensor
    Luo, Tao
    Wang, Hongyi
    Song, Hongjiang
    Christen, Jennifer Blain
    2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 336 - 339
  • [2] On-chip electrochemical measurement of β-galactosidase expression using a microbial chip
    Kaya, T
    Nagamine, K
    Matsui, N
    Yasukawa, T
    Shiku, H
    Matsue, T
    CHEMICAL COMMUNICATIONS, 2004, (02) : 248 - 249
  • [3] An electrochemical pumping system for on-chip gradient generation
    Xie, J
    Miao, YN
    Shih, J
    He, Q
    Liu, J
    Tai, YC
    Lee, TD
    ANALYTICAL CHEMISTRY, 2004, 76 (13) : 3756 - 3763
  • [4] Analysis of Random Telegraph Noise in 45-nm CMOS Using On-Chip Characterization System
    Realov, Simeon
    Shepard, Kenneth L.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (05) : 1716 - 1722
  • [5] Compact Electrochemical System Using On-Chip Sensor Electrodes and Integrated Devices
    Yamazaki, Tomoyuki
    Ikeda, Takaaki
    Ishida, Makoto
    Sawada, Kazuaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (04)
  • [6] On-chip deposition of carbon nanotubes using CMOS microhotplates
    Haque, M. S.
    Teo, K. B. K.
    Rupensinghe, N. L.
    Ali, S. Z.
    Haneef, I.
    Maeng, Sunglyul
    Park, J.
    Udrea, F.
    Milne, Andw I.
    NANOTECHNOLOGY, 2008, 19 (02)
  • [7] Studies on On-Chip Antenna using Standard CMOS Technology
    Mandal, Sanjukta
    Mandal, Sujit Kumar
    Mahapatra, Rajat
    Mal, Ashis Kumar
    PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC), 2017, : 471 - 475
  • [8] The CMOS design of robust neural chip with the on-chip learning capability
    Wu, CY
    Liu, RY
    Jou, IC
    ShyhJYE, FJ
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 426 - 429
  • [9] ON-CHIP ELECTROCHEMICAL DETERMINATION OF CEFEPIME
    Nigam, Preeti
    Joshi, Harish C.
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2010, 38 (05) : 376 - 383
  • [10] Random Telegraph Noise in 45-nm CMOS: Analysis Using an On-Chip Test and Measurement System
    Realov, Simeon
    Shepard, Kenneth L.
    2010 INTERNATIONAL ELECTRON DEVICES MEETING - TECHNICAL DIGEST, 2010,