Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra

被引:182
|
作者
Tate, Anne R.
Underwood, Joshua
Acosta, Dionisio M.
Julia-Sape, Margarida
Majos, Carles
Moreno-Torres, Angel
Howe, Franklyn A.
van der Graaf, Marinette
Lefournier, Virginie
Murphy, Mary M.
Loosemore, Alison
Ladroue, Christophe
Wesseling, Pieter
Bosson, Jean Luc
Cabañas, Miquel E.
Simonetti, Arjan W.
Gajewicz, Witold
Calvar, Jorge
Capdevila, Antoni
Wilkins, Peter R.
Bell, B. Anthony
Remy, Chantal
Heerschap, Arend
Watson, Des
Griffiths, John R.
Arus, Carles
机构
[1] Univ Autonoma Barcelona, Dept Bioquim & Biol Mol, Unitat Ciencies, Cerdanyola Del Valles 08193, Spain
[2] Univ London, St Georges, London SW17 0RE, England
[3] Univ Sussex, Dept Informat, Brighton BN1 9QH, E Sussex, England
[4] CSU BEllvitge, Inst Diagnost Imatge, Barcelona 08907, Spain
[5] Ctr Diagnost Pedralbes, Barcelona 08950, Spain
[6] Radboud Univ Nijmegen, Dept Radiol, Radboud Univ Nijmegen Med Ctr, NL-6500 HB Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Dept Pathol, Radboud Univ Nijmegen Med Ctr, NL-6500 HB Nijmegen, Netherlands
[8] CHU Grenoble, INSERM, U594, Unite Mixte Univ Neuroimagerie Fonct & Metab, F-38043 Grenoble 9, France
[9] Univ Autonoma Barcelona, Fac Ciencies, Serv Ressonancia Magnet Nucl, Cerdanyola Del Valles 08193, Spain
[10] Radboud Univ Nijmegen, Inst Mol & Mat Analyt Chem, NL-6525 Nijmegen, Netherlands
[11] Med Univ Lodz, Dept Radiol, PL-90156 Lodz, Poland
[12] FLENI, Serv Resonancia Magnet, Dept Imagenes, Buenos Aires, DF, Argentina
关键词
MRS; H-1; MRS pattern recognition; multivariate analysis; humans; brain; cancer;
D O I
10.1002/nbm.1016
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A computer-based decision support system to assist radiologists in diagnosing and grading brain tumours has been developed by the multi-centre INTERPRET project. Spectra from a database of H-1 single-voxel spectra of different types of brain tumours, acquired in vivo from 334 patients at four different centres, are clustered according to their pathology, using automated pattern recognition techniques and the results are presented as a two-dimensional scatterplot using an intuitive graphical user interface (GUI). Formal quality control procedures were performed to standardize the performance of the instruments and check each spectrum, and teams of expert neuroradiologists, neurosurgeons, neurologists and neuropathologists clinically validated each case. The prototype decision support system (DSS) successfully classified 89% of the cases in an independent test set of 91 cases of the most frequent tumour types (meningiomas, low-grade gliomas and high-grade malignant tumours-glioblastomas and metastases). It also helps to resolve diagnostic difficulty in borderline cases. When the prototype was tested by radiologists and other clinicians it was favourably received. Results of the preliminary clinical analysis of the added value of using the DSS for brain tumour diagnosis with MRS showed a small but significant improvement over MRI used alone. In the comparison of individual pathologies, PNETs were significantly better diagnosed with the DSS than with MRI alone. Copyright (C) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:411 / 434
页数:24
相关论文
共 50 条
  • [21] Evaluation of the INTERPRET decision-support system: can it improve the diagnostic value of magnetic resonance spectroscopy of the brain?
    J. Hellström
    R. Romanos Zapata
    S. Libard
    J. Wikström
    F. Ortiz-Nieto
    I. Alafuzoff
    R. Raininko
    Neuroradiology, 2019, 61 : 43 - 53
  • [22] Evaluation of the INTERPRET decision-support system: can it improve the diagnostic value of magnetic resonance spectroscopy of the brain?
    Hellstrom, J.
    Zapata, R. Romanos
    Libard, S.
    Wikstrom, J.
    Ortiz-Nieto, F.
    Alafuzoff, I.
    Raininko, R.
    NEURORADIOLOGY, 2019, 61 (01) : 43 - 53
  • [23] A COMPUTERISED CLINICAL DECISION SUPPORT SYSTEM FOR DIAGNOSING CHILDREN'S BRAIN TUMOURS USING FUNCTIONAL IMAGING AND MACHINE LEARNING
    Rose, Heather
    Ahmed, Arfan
    Babourina-Brooks, Ben
    Khan, Omar
    MacPherson, Lesley
    Manias, Karen
    Peake, Ashley
    Ali, Sana
    Withey, Stephanie
    Worthington, Lara
    Novak, Jan
    Zarinabad, Nilou
    Grundy, Richard
    Arvanitis, Theodoros
    Peet, Andrew
    NEURO-ONCOLOGY, 2022, 24 : 79 - 79
  • [24] Single-voxel and multi-voxel spectroscopy yield comparable results in the normal juvenile canine brain when using 3 Tesla magnetic resonance imaging
    Lee, Alison M.
    Beasley, Michaela J.
    Barrett, Emerald D.
    James, Judy R.
    Gambino, Jennifer M.
    VETERINARY RADIOLOGY & ULTRASOUND, 2018, 59 (05) : 577 - 586
  • [25] On the design of a web-based decision support system for brain tumour diagnosis using distributed agents
    Arus, Carles
    Celda, Bernardo
    Dasmahaptra, Srinandan
    Dupplaw, David
    Gonzalez-Velez, Horacio
    Van Huffel, Sabine
    Lewis, Paul
    Ariet, Magi Lluch i
    Mier, Mariola
    Peet, Andrew
    Robles, Montserrat
    2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WORKSHOPS PROCEEDINGS, 2006, : 208 - +
  • [26] Differential Diagnosis of Brain Diseases Using In Vivo Proton Magnetic Resonance Spectroscopy at 3 Tesla: A Preliminary Study
    Shen, Yu-Lan
    Kang, Heoung-Keun
    Kim, Tae-Hoon
    Sundaram, Thirunavukkarasu
    Kim, Hyeong-Jung
    Jeong, Gwang-Woo
    JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY, 2009, 13 (02): : 64 - 83
  • [27] Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks
    Harish Poptani
    Jouni Kaartinen
    Rakesh K. Gupta
    Matthias Niemitz
    Yrjö Hiltunen
    Risto A. Kauppinen
    Journal of Cancer Research and Clinical Oncology, 1999, 125 : 343 - 349
  • [28] Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks
    Poptani, H
    Kaartinen, J
    Gupta, RK
    Niemitz, M
    Hiltunen, Y
    Kauppinen, RA
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 1999, 125 (06) : 343 - 349
  • [29] Development and Validation of a Deep Learning Model for Brain Tumor Diagnosis and Classification Using Magnetic Resonance Imaging
    Gao, Peiyi
    Shan, Wei
    Guo, Yue
    Wang, Yinyan
    Sun, Rujing
    Cai, Jinxiu
    Li, Hao
    Chan, Wei Sheng
    Liu, Pan
    Yi, Lei
    Zhang, Shaosen
    Li, Weihua
    Jiang, Tao
    He, Kunlun
    Wu, Zhenzhou
    JAMA NETWORK OPEN, 2022, 5 (08) : e2225608
  • [30] Development of a CNN-based decision support system for lung disease diagnosis using chest radiographs
    Magar, B. T.
    Rahman, M. A.
    Saha, P. K.
    Ahmad, M.
    Rashid, M. A.
    Higa, H.
    AIP ADVANCES, 2025, 15 (03)