MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

被引:33
|
作者
Lee, Garam [1 ,2 ]
Kang, Byungkon [1 ]
Nho, Kwangsik [3 ,4 ]
Sohn, Kyung-Ah [1 ]
Kim, Dokyoon [2 ,5 ,6 ]
机构
[1] Ajou Univ, Dept Software & Comp Engn, Suwon, South Korea
[2] Geisinger, Biomed & Translat Informat Inst, Danville, PA 17822 USA
[3] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[4] Indiana Univ Sch Med, Dept Radiol & Imaging Sci, Ctr Neuroimaging, Indianapolis, IN 46202 USA
[5] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[6] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
基金
新加坡国家研究基金会;
关键词
multimodal deep learning; data integration; gated recurrent unit; Alzheimer's disease; !text type='python']python[!/text] package; PREDICTION; CONVERSION;
D O I
10.3389/fgene.2019.00617
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A Deep Reinforcement Learning-Based Framework for Content Caching
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [22] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [23] Deep Learning-Based Cellular Random Access Framework
    Jang, Han Seung
    Lee, Hoon
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7503 - 7518
  • [24] A deep learning-based framework for road traffic prediction
    Benarmas, Redouane Benabdallah
    Bey, Kadda Beghdad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6891 - 6916
  • [25] INDEEDopt: a deep learning-based ReaxFF parameterization framework
    Sengul, Mert Y.
    Song, Yao
    Nayir, Nadire
    Gao, Yawei
    Hung, Ying
    Dasgupta, Tirthankar
    van Duin, Adri C. T.
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [26] A Deep Learning-Based Framework for Phishing Website Detection
    Tang, Lizhen
    Mahmoud, Qusay H.
    IEEE ACCESS, 2022, 10 : 1509 - 1521
  • [27] INDEEDopt: a deep learning-based ReaxFF parameterization framework
    Mert Y. Sengul
    Yao Song
    Nadire Nayir
    Yawei Gao
    Ying Hung
    Tirthankar Dasgupta
    Adri C. T. van Duin
    npj Computational Materials, 7
  • [28] Deep Learning-Based Framework for Comprehensive Mask Optimization
    Yu, Bo-Yi
    Zhong, Yong
    Fang, Shao-Yun
    Kuo, Hung-Fei
    24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 311 - 316
  • [29] A deep learning-based framework for road traffic prediction
    Redouane Benabdallah Benarmas
    Kadda Beghdad Bey
    The Journal of Supercomputing, 2024, 80 : 6891 - 6916
  • [30] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107