Efficiency and stability of narrow-gap semiconductor-based photoelectrodes

被引:107
|
作者
Zheng, Jianyun [1 ,2 ,3 ]
Zhou, Huaijuan [4 ,5 ]
Zou, Yuqin [1 ]
Wang, Ruilun [1 ]
Lyu, Yanhong [1 ]
Jiang, San Ping [2 ,3 ]
Wang, Shuangyin [1 ,6 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chem Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Curtin Univ, Western Australian Sch Mines Minerals Energy & Ch, Perth, WA 6102, Australia
[3] Curtin Univ, Energy Technol Inst, Perth, WA 6102, Australia
[4] Tech Univ Dresden, Univ Hosp, Ctr Translat Bone Joint & Soft Tissue Res, Fetscherstr 74, D-01307 Dresden, Germany
[5] Tech Univ Dresden, Fac Med Carl Gustav Carus, Fetscherstr 74, D-01307 Dresden, Germany
[6] Shenzhen Res Inst Hunan Univ, Shenzhen 518057, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
ATOMIC-LAYER DEPOSITION; SOLAR HYDROGEN-PRODUCTION; WATER-SPLITTING PERFORMANCE; CORE/SHELL NANOWIRE ARRAYS; NEAR-COMPLETE SUPPRESSION; TIO2 PROTECTIVE LAYERS; N-SI PHOTOANODES; P-TYPE SILICON; THIN-FILM; CHARGE-TRANSFER;
D O I
10.1039/c9ee00524b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of solar energy into fuels is an attractive prospect for storing renewable energy, and photoelectrochemical technology represents a pathway by which solar fuels might be realized. Ideally, cost-effective photoelectrodes efficiently and stably drive anodic and/or cathodic half-reactions. However, no photoelectrode satisfies all the harsh requirements of practical applications, mainly involving high conversion efficiency and good stability. Narrow-gap semiconductor-based photoelectrodes have recently generated a great deal of interest because of their high conversion efficiency. The possible modification of the efficiency and stability using various structural engineering strategies has been largely responsible for the rapid growth of interest in these photoelectrodes. In this review, we aim to present the advances in the efficiency and stability of narrow-gap semiconductor-based photoelectrodes on three levels: fundamental bottlenecks, existing solution strategies, and applications.
引用
收藏
页码:2345 / 2374
页数:30
相关论文
共 50 条
  • [41] Threshold for photoelectric emission from a quantum ring of narrow-gap semiconductor
    Das, N. R.
    Sen, Susmita
    PHYSICA B-CONDENSED MATTER, 2008, 403 (19-20) : 3734 - 3739
  • [42] 2-BAND NARROW-GAP APPROXIMATION IN THE THEORY OF SEMICONDUCTOR HETEROJUNCTIONS
    KANDILAROV, BD
    DETCHEVA, V
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (23): : L919 - L222
  • [43] CHARACTERISTICS OF CARRIER LOCALIZATION IN AN ACCUMULATION LAYER ON THE SURFACE OF A NARROW-GAP SEMICONDUCTOR
    KUCHMA, AE
    SVERDLOV, VA
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1988, 22 (08): : 952 - 953
  • [44] INFRARED INTERBAND-TRANSITIONS IN A UNIAXIALLY DEFORMED NARROW-GAP SEMICONDUCTOR
    VASKO, FT
    STRIKHA, MV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1990, 24 (07): : 773 - 777
  • [45] PINCH EFFECT IN A NARROW-GAP SEMICONDUCTOR WITH SYMMETRICAL ELECTRON AND HOLE SPECTRA
    DMITRIEV, AV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1986, 20 (04): : 437 - 439
  • [46] Chemical pressure in the correlated narrow-gap semiconductor FeGa3
    Verchenko, Valeriy Yu.
    Zubtsovskii, Alexander O.
    Tsirlin, Alexander A.
    Shevelkov, Andrei V.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (03) : 2371 - 2378
  • [47] Spin splitting of energy levels in asymmetric narrow-gap semiconductor heterostructures
    Andryushin, EA
    Silin, AP
    Vereshchagin, SA
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 3-4 : 85 - 91
  • [48] Metal Site Doping in the Narrow-Gap FeGa3 Semiconductor
    Kotur, B.
    Babizhetskyy, V.
    Bauer, E.
    Kneidinger, F.
    Danner, A.
    Leber, L.
    Michor, H.
    MATERIALS SCIENCE, 2013, 49 (02) : 211 - 219
  • [49] Zeeman effect and magnetic anomalies in narrow-gap semiconductor quantum dots
    Prado, SJ
    Trallero-Giner, C
    López-Richard, V
    Alcalde, AM
    Marques, GE
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 20 (3-4): : 286 - 289
  • [50] Chemical pressure in the correlated narrow-gap semiconductor FeGa3
    Valeriy Yu. Verchenko
    Alexander O. Zubtsovskii
    Alexander A. Tsirlin
    Andrei V. Shevelkov
    Journal of Materials Science, 2019, 54 : 2371 - 2378