Regularized robust estimation in binary regression models

被引:0
|
作者
Tang, Qingguo [1 ]
Karunamuni, Rohana J. [2 ]
Liu, Boxiao [2 ,3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing, Peoples R China
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[3] Bank Montreal, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Binary regression; maximum likelihood; minimum-distance methods; variable selection; efficiency; robustness; MINIMUM HELLINGER DISTANCE; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ASYMPTOTIC NORMALITY; CONSISTENCY; EFFICIENT; LOCATION; FITS;
D O I
10.1080/02664763.2020.1822304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate robust parameter estimation and variable selection for binary regression models withgrouped data. We investigate estimation procedures based on the minimum-distance approach. In particular, we employ minimum Hellinger and minimum symmetric chi-squared distances criteria and propose regularized minimum-distance estimators. These estimators appear to possess a certain degree of automatic robustness against model misspecification and/or for potential outliers. We show that the proposed non-penalized and penalized minimum-distance estimators are efficient under the model and simultaneously have excellent robustness properties. We study their asymptotic properties such as consistency, asymptotic normality and oracle properties. Using Monte Carlo studies, we examine the small-sample and robustness properties of the proposed estimators and compare them with traditional likelihood estimators. We also study two real-data applications to illustrate our methods. The numerical studies indicate the satisfactory finite-sample performance of our procedures.
引用
收藏
页码:574 / 598
页数:25
相关论文
共 50 条
  • [31] Robust Estimation and Tests for Parameters of Some Nonlinear Regression Models
    Liu, Pengfei
    Zhang, Mengchen
    Zhang, Ru
    Zhou, Qin
    MATHEMATICS, 2021, 9 (06)
  • [32] Robust estimation of the number of components for mixtures of linear regression models
    Meng Li
    Sijia Xiang
    Weixin Yao
    Computational Statistics, 2016, 31 : 1539 - 1555
  • [33] Robust estimation in partially linear regression models with monotonicity constraints
    Rodriguez, Daniela
    Valdora, Marina
    Vena, Pablo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 2039 - 2052
  • [34] Robust estimation of the number of components for mixtures of linear regression models
    Li, Meng
    Xiang, Sijia
    Yao, Weixin
    COMPUTATIONAL STATISTICS, 2016, 31 (04) : 1539 - 1555
  • [35] Robust estimation and confidence interval in meta-regression models
    Yu, Dalei
    Ding, Chang
    He, Na
    Wang, Ruiwu
    Zhou, Xiaohua
    Shi, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 93 - 118
  • [36] ROBUST ESTIMATION AND TESTING FOR GENERAL NONLINEAR-REGRESSION MODELS
    TABATABAI, MA
    ARGYROS, IK
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 58 (01) : 85 - 101
  • [37] Efficient robust estimation of time-series regression models
    Pavel Čížek
    Applications of Mathematics, 2008, 53 : 267 - 279
  • [38] Robust estimation for semi-functional linear regression models
    Boente, Graciela
    Salibian-Barrera, Matias
    Vena, Pablo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [39] Efficient robust estimation of time-series regression models
    Cizek, Pavel
    APPLICATIONS OF MATHEMATICS, 2008, 53 (03) : 267 - 279
  • [40] Robust estimation of coefficient matrices in multivariate linear regression models
    Busarova, D. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (03) : 563 - 565