Bounded sets in spaces and topological groups

被引:28
|
作者
Hernández, S
Sanchis, M
Tkacenko, M
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
bounded; relatively pseudocompact; C-compact; z-embedded; R-factorizable group; realcompactification; distribution law;
D O I
10.1016/S0166-8641(98)00098-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate C-compact and relatively pseudocompact subsets of Tychonoff spaces with a special emphasis given to subsets of topological groups. It is shown that a relatively pseudocompact subset of a space X is C-compact in X, but not vice versa. If, however, X is a topological group, then these properties coincide. A product of two C-compact (relatively pseudocompact) subsets A of X and B of Y need not be C-compact (relatively pseudocompact) in X x Y, but if one of the factors X, Y is a topological group, then both C-compactness and relative pseudocompactness are preserved. We Drove under the same assumption that, with A and B being bounded subsets of X and Y, the closure of A x B in upsilon(X x Y) is naturally homeomorphic to cl(upsilon X)A x cl(upsilon Y)B, where upsilon stands for the Hewitt realcompactification. One of our main technical tools is the notion of an R-factorizable group. We show that an R-factorizable subgroup H of an arbitrary group G is z-embedded in G. This fact is applied to prove that the group operations of an R-factorizable group G can always be extended to the realcompactification upsilon G of G, thus giving to upsilon G the topological group structure, We also prove that a C-compact subset A of a topological group G is relatively pseudocompact in the subspace B = A . A(-1) . A of G. (C) 2000 Elsevier Science B.V, All rights reserved.
引用
收藏
页码:21 / 43
页数:23
相关论文
共 50 条
  • [41] On Λ-generalized closed sets in topological spaces
    Caldas, X.
    Jafari, S.
    Noiri, T.
    ACTA MATHEMATICA HUNGARICA, 2008, 118 (04) : 337 - 343
  • [42] τ*-Generalized Closed Sets in Topological Spaces
    Pushpalatha, A.
    Eswaran, S.
    Rajarubi, P.
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1115 - +
  • [43] Regular sets in generalized topological spaces
    R. Jamunarani
    P. Jeyanthi
    Acta Mathematica Hungarica, 2012, 135 : 342 - 349
  • [44] Borel sets and functions in topological spaces
    J. Spurný
    Acta Mathematica Hungarica, 2010, 129 : 47 - 69
  • [45] On Paraopen Sets and Maps in Topological Spaces
    Ittanagi, Basavaraj M.
    Benchalli, Shivanagappa S.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (01): : 301 - 310
  • [46] ψ*-closed sets in fuzzy topological spaces
    M. A. Abd Allah
    A. S. Nawar
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [47] NEGLIGIBLE SETS IN LINEAR TOPOLOGICAL SPACES
    BESSAGA, C
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (02): : 117 - &
  • [48] (Λ, sp)-open sets in topological spaces
    Boonpok, Chawalit
    Khampakdee, Jeeranunt
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 572 - 588
  • [49] On strong and weak sets in topological spaces
    Al-Abdulla, Raad Aziz Hussain
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (03) : 765 - 773
  • [50] Borel sets and functions in topological spaces
    Spurny, J.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (1-2) : 47 - 69