Local Fractional Laplace Variational Iteration Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow

被引:8
|
作者
Xu, Shu [1 ,2 ]
Ling, Xiang [1 ]
Cattani, Carlo [3 ]
Xie, Gong-Nan [4 ]
Yang, Xiao-Jun [5 ]
Zhao, Yang [6 ]
机构
[1] Nanjing Univ Technol, Sch Mech & Power Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Huaihai Inst Technol, Sch Mech Engn, Lianyungang 222005, Peoples R China
[3] Univ Salerno, Dept Math, I-84084 Salerno, Italy
[4] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[5] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China
[6] Jiangmen Polytech, Elect & Informat Technol Dept, Jiangmen 529090, Peoples R China
关键词
ORDER THEORY; CONDUCTION; DIFFUSION;
D O I
10.1155/2014/914725
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The local fractional Laplace variational iteration method is used for solving the nonhomogeneous heat equations arising in the fractal heat flow. The approximate solutions are nondifferentiable functions and their plots are also given to show the accuracy and efficiency to implement the previous method.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Application of He's variational iteration method to nonlinear heat transfer equations
    Miansari, Mo.
    Ganji, D. D.
    Miansari, Me.
    PHYSICS LETTERS A, 2008, 372 (06) : 779 - 785
  • [32] He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics
    Nadeem, Muhammad
    He, Ji-Huan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (05) : 1234 - 1245
  • [33] Application of variational iteration method to heat-and wave-like equations
    Batiha, B.
    Noorani, M. S. M.
    Hashim, I.
    PHYSICS LETTERS A, 2007, 369 (1-2) : 55 - 61
  • [34] A fractional variational iteration method for solving fractional nonlinear differential equations
    Wu, Guo-cheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2186 - 2190
  • [35] The Combined Laplace-Variational Iteration Method for Partial Differential Equations
    Matinfar, M.
    Saeidy, M.
    Ghasemi, M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (02) : 93 - 101
  • [36] An efficient computational technique for local fractional heat conduction equations in fractal media
    Zhao, Duan
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    Yang, Xiao-Jun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1478 - 1486
  • [37] THE LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD A Promising Technology for Fractional Calculus
    Yang, Yong-Ju
    THERMAL SCIENCE, 2020, 24 (04): : 2605 - 2614
  • [38] Convergent optimal variational iteration method and applications to heat and fluid flow problems
    Turkyilmazoglu, Mustafa
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2016, 26 (3-4) : 790 - 804
  • [39] A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations
    Gao, Feng
    Srivastava, H. M.
    Gao, Ya-Nan
    Yang, Xiao-Jun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (11): : 5830 - 5835
  • [40] APPROXIMATE ANALYTIC SOLUTION OF THE FRACTAL FISHER?S EQUATION VIA LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD
    Sun, Jian-She
    THERMAL SCIENCE, 2022, 26 (03): : 2699 - 2705