Engineering Neutron Diffraction Data Analysis with Inverse Neural Network Modeling

被引:1
|
作者
Denizer, Baris [1 ]
Uestuendag, Ersan [1 ]
Ceylan, Halil [1 ,2 ]
Li, Li [3 ]
Lee, Seung-Yub [2 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Lowa State Univ, Civil Construct & Environm Engn, Ames, IA 50011 USA
[3] Columbia Univ, Appl Phys & Appl Math, Columbia, NY 10027 USA
基金
美国国家科学基金会;
关键词
neutron diffraction; finite element; neural network; inverse analysis; constitutive law;
D O I
10.4028/www.scientific.net/MSF.772.39
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Integration of engineering neutron diffraction data analysis and solid mechanics modeling is a powerful method to deduce in-situ constitutive behavior of materials. Since diffraction data originates from spatially discrete subsets of the material volume, extrapolation of the data to the behavior of the overall sample is non-trivial. The finite element modelhas been widely used for interpreting diffraction data by optimizing model parameters via iterative processes. In order to maximize the rigor of such analysis and to increase fitting efficiency and accuracy, we have developed an optimization algorithm based on the neural network architecture.Theinverse neural network modelreveals parameter sensitivity quantitatively during a training process, and yieldsmore accurate phase specific constitutive laws of the composite materials compared to the conventional method,once networks are successfully trained.
引用
收藏
页码:39 / +
页数:2
相关论文
共 50 条
  • [31] Inverse artificial neural network modeling for metamaterial unit cell synthesis
    Nanda, Sambhudutta
    Sahu, Prasanna Kumar
    Mishra, Rabindra Kishore
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2019, 18 (04) : 1388 - 1399
  • [32] Inverse artificial neural network modeling for metamaterial unit cell synthesis
    Sambhudutta Nanda
    Prasanna Kumar Sahu
    Rabindra Kishore Mishra
    Journal of Computational Electronics, 2019, 18 : 1388 - 1399
  • [33] Transmitarray Antenna Design Using Forward and Inverse Neural Network Modeling
    Gosal, Gurpreet
    Almajali, E'qab
    McNamara, Derek
    Yagoub, Mustapha
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1483 - 1486
  • [34] Ranking input importance in neural network modeling of engineering problems
    Sung, AH
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 316 - 321
  • [35] Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
    Munteanu, Valentin
    Starostin, Vladimir
    Greco, Alessandro
    Pithan, Linus
    Gerlach, Alexander
    Hinderhofer, Alexander
    Kowarik, Stefan
    Schreiber, Frank
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2024, 57 : 456 - 469
  • [36] Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
    Munteanu, Valentin
    Starostin, Vladimir
    Greco, Alessandro
    Pithan, Linus
    Gerlach, Alexander
    Hinderhofer, Alexander
    Kowarik, Stefan
    Schreiber, Frank
    Journal of Applied Crystallography, 2024, 57 (Pt 2) : 456 - 469
  • [37] Effect of strong neutron absorption on texture and diffraction data analysis
    Volz, HM
    Vogel, SC
    Roberts, JA
    Lawson, AC
    Williams, DJ
    Daemen, LL
    ICOTOM 14: TEXTURES OF MATERIALS, PTS 1AND 2, 2005, 495-497 : 119 - 124
  • [39] Rietveld texture analysis from TOF neutron diffraction data
    Wenk, H. -R.
    Lutterotti, L.
    Vogel, S. C.
    POWDER DIFFRACTION, 2010, 25 (03) : 283 - 296
  • [40] Input Data Analysis by Neural Network
    Hendtlass, Tim
    2008 THIRD INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, 2008, : 49 - 53