UNIFICATION OF INTEGRABLE q-DIFFERENCE EQUATIONS

被引:0
|
作者
Silindir, Burcu [1 ]
Soyoglu, Duygu [2 ]
机构
[1] Dokuz Eylul Univ, Dept Math, TR-35160 Izmir, Turkey
[2] Izmir Univ Econ, Dept Math, TR-35330 Izmir, Turkey
关键词
Integrability; q-soliton solutions; q-difference KdV equation; q-difference-q-difference Toda equation; q-differencesine-Gordon equation; MULTIPLE COLLISIONS; BILINEAR EQUATIONS; TODA LATTICE; SEARCH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a unifying framework for q-discrete equations. We introduce a generalized q-difference equation in Hirota bilinear form and develop the associated three-q-soliton solutions which are described in polynomials of power functions by utilizing Hirota direct method. Furthermore, we present that the generalized q-difference soliton equation reduces to q-analogues of Toda, KdV and sine-Gordon equations equipped with their three-q-soliton solutions by appropriate transformations.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] ISOMONODROMIC DEFORMATION OF q-DIFFERENCE EQUATIONS AND CONFLUENCE
    Dreyfus, Thomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 1109 - 1120
  • [42] Functional relations for solutions of q-difference equations
    Dreyfus, Thomas
    Hardouin, Charlotte
    Roques, Julien
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1751 - 1791
  • [43] Existence of solutions for fractional q-difference equations
    Ulke, Oykum
    Topal, Fatma Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 573 - 591
  • [44] On the solutions of a nonlinear system of q-difference equations
    Turan, Nihan
    Basarir, Metin
    Sahin, Aynur
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [45] Properties on solutions of some q-difference equations
    Bao Qin Chen
    Zong Xuan Chen
    Sheng Li
    Acta Mathematica Sinica, English Series, 2010, 26 : 1877 - 1886
  • [46] MODULAR UNITS AND THE q-DIFFERENCE EQUATIONS OF SELBERG
    Folsom, Amanda
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (02) : 283 - 299
  • [47] CONFLUENCE OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE EQUATIONS
    Dreyfus, Thomas
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 431 - 507
  • [48] Properties on Solutions of Some q-Difference Equations
    Bao Qin CHEN Zong Xuan CHEN~(1)) Sheng LI School of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2010, 26 (10) : 1877 - 1886
  • [49] Quantization scheme for modular q-difference equations
    Sergeev, SM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 142 (03) : 422 - 430
  • [50] The Stokes phenomenon for linear q-difference equations
    Sauloy, Jacques
    SYMMETRIES AND RELATED TOPICS IN DIFFERENTIAL AND DIFFERENCE EQUATIONS, 2009, 549 : 123 - 139