A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing

被引:148
|
作者
Yin, Kangquan [1 ,2 ]
Han, Ting [1 ]
Liu, Guang [1 ]
Chen, Tianyuan [1 ]
Wang, Ying [1 ]
Yu, Alice Yunzi L. [1 ]
Liu, Yule [1 ]
机构
[1] Tsinghua Univ, Sch Life Sci, Ctr Plant Biol, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Microbiol, State Key Lab Plant Genom, Beijing, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
TARGETED MUTAGENESIS; FUNCTIONAL-ANALYSIS; IN-VITRO; VIRUS; DNA; CRISPR-CAS9; ARABIDOPSIS; EXPRESSION; MULTIPLEX; PATHWAY;
D O I
10.1038/srep14926
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR/Cas has emerged as potent genome editing technology and has successfully been applied in many organisms, including several plant species. However, delivery of genome editing reagents remains a challenge in plants. Here, we report a virus-based guide RNA (gRNA) delivery system for CRISPR/Cas9 mediated plant genome editing (VIGE) that can be used to precisely target genome locations and cause mutations. VIGE is performed by using a modified Cabbage Leaf Curl virus (CaLCuV) vector to express gRNAs in stable transgenic plants expressing Cas9. DNA sequencing confirmed VIGE of endogenous NbPDS3 and NbIspH genes in non-inoculated leaves because CaLCuV can infect plants systemically. Moreover, VIGE of NbPDS3 and NbIspH in newly developed leaves caused photo-bleached phenotype. These results demonstrate that geminivirus-based VIGE could be a powerful tool in plant genome editing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] CRISPR/Cas9 genome editing in crops
    Smedley, Mark
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S104 - S104
  • [42] Efficient Genome Editing in Bacillus licheniformis Mediated by a Conditional CRISPR/Cas9 System
    Li, Youran
    Wang, Hanrong
    Zhang, Liang
    Ding, Zhongyang
    Xu, Sha
    Gu, Zhenghua
    Shi, Guiyang
    MICROORGANISMS, 2020, 8 (05)
  • [43] CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects
    Paul, Joseph W., III
    Qi, Yiping
    PLANT CELL REPORTS, 2016, 35 (07) : 1417 - 1427
  • [44] Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics
    Brittany E. Givens
    Youssef W. Naguib
    Sean M. Geary
    Eric J. Devor
    Aliasger K. Salem
    The AAPS Journal, 20
  • [45] CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects
    Joseph W. Paul
    Yiping Qi
    Plant Cell Reports, 2016, 35 : 1417 - 1427
  • [46] Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system
    Xiong, Xingpeng
    Liu, Weimiao
    Jiang, Jianxia
    Xu, Liai
    Huang, Li
    Cao, Jiashu
    MOLECULAR GENETICS AND GENOMICS, 2019, 294 (05) : 1251 - 1261
  • [47] Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics
    Givens, Brittany E.
    Naguib, Youssef W.
    Geary, Sean M.
    Devor, Eric J.
    Salem, Aliasger K.
    AAPS JOURNAL, 2018, 20 (06):
  • [48] Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts
    Laiyou Wang
    Aihua Deng
    Yun Zhang
    Shuwen Liu
    Yong Liang
    Hua Bai
    Di Cui
    Qidi Qiu
    Xiuling Shang
    Zhao Yang
    Xiuping He
    Tingyi Wen
    Biotechnology for Biofuels, 11
  • [49] Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system
    Xingpeng Xiong
    Weimiao Liu
    Jianxia Jiang
    Liai Xu
    Li Huang
    Jiashu Cao
    Molecular Genetics and Genomics, 2019, 294 : 1251 - 1261
  • [50] Genome Editing in Erythroid Progenitor Cells Mediated By Crispr/Cas9
    Li, Hojun
    Shi, Jiahai
    Lodish, Harvey F.
    BLOOD, 2014, 124 (21)