Congruence formulas for Legendre modular polynomials

被引:1
|
作者
Betina, Adel [1 ]
Lecouturier, Emmanuel [2 ]
机构
[1] Univ Sheffield, Western Bank, Hicks Bldg, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Paris Diderot, 5 Rue Thomas Mann, F-75013 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Rigid analytic geometry; Mumford uniformization; Semi-stable curves; Modular curves; Modular polynomials; Supersingular elliptic curves; PERIODS; CURVES;
D O I
10.1016/j.jnt.2018.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p >= 5 be a prime number. We generalize the results of E. de Shalit [4] about supersingular j-invariants in characteristic p. We consider supersingular elliptic curves with a basis of 2-torsion over (F) over barp, or equivalently supersingular Legendre lambda-invariants. Let F-p(X,Y) is an element of Z[X,Y] be the p-th modular polynomial for lambda-invariants. A simple generalization of Kronecker's classical congruence shows that R(X) := F-p(X,X-p)/p is in Z[X]. We give a formula for R(lambda) if lambda is supersingular. This formula is related to the Manin-Drinfeld pairing used in the p-adic uniformization of the modular curve X(Gamma(0)(p) boolean AND Gamma(2)). This pairing was computed explicitly modulo principal units in a previous work of both authors. Furthermore, if lambda is supersingular and is in F-p, then we also express R(lambda) in terms of a CM lift (which is shown to exist) of the Legendre elliptic curve associated to lambda. (C) 2018 The Authors. Published by Elsevier Inc.
引用
收藏
页码:71 / 87
页数:17
相关论文
共 50 条
  • [21] GENERALIZED LEGENDRE POLYNOMIALS
    SCHMIDT, AL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 404 : 192 - 202
  • [22] ON POLAR LEGENDRE POLYNOMIALS
    Pijeira Cabrera, H.
    Bello Cruz, J. Y.
    Urbina Romero, W.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (06) : 2025 - 2036
  • [23] NOTES ON LEGENDRE POLYNOMIALS
    RAINVILLE, ED
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 51 (04) : 268 - 271
  • [24] AN INEQUALITY FOR LEGENDRE POLYNOMIALS
    ELBERT, A
    LAFORGIA, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) : 1348 - 1360
  • [25] On the interval Legendre polynomials
    Patrício, F
    Ferreira, JA
    Oliveira, F
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (01) : 215 - 227
  • [26] Asymptotics on a Class of Legendre Formulas
    Diaz, Maiyu
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (01): : 20 - 34
  • [27] CONGRUENCE FACTORING OF POLYNOMIALS
    KIMBERLI.CH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A63 - A63
  • [28] CONGRUENCE SUBGROUPS OF THE MODULAR GROUP RELATED TO CONGRUENCE RESTRICTIONS OF MODULAR FORMS
    Knopp, M. I.
    Omer, Y.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 15 (01): : 1 - 17
  • [29] On the Elementary Symmetric Polynomials and the Zeros of Legendre Polynomials
    Alatawi, Maryam Salem
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [30] Congruence Extensions in Congruence-Modular Varieties
    Georgescu, George
    Kwuida, Leonard
    Muresan, Claudia
    AXIOMS, 2024, 13 (12)