A review of multi-criteria optimization techniques for agricultural land use allocation

被引:110
|
作者
Kaim, Andrea [1 ]
Cord, Anna F. [1 ]
Volk, Martin [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Permoserstr 15, D-04318 Leipzig, Germany
关键词
Agricultural land use allocation; Multi-criteria decision analysis (MCDA); Multi-criteria optimization; Stakeholder integration; Trade-off analysis; Constraint handling; TRADE-OFF ANALYSIS; ECOSYSTEM SERVICES; MULTIOBJECTIVE OPTIMIZATION; GENETIC ALGORITHM; DIFFERENTIAL EVOLUTION; DECISION-SUPPORT; BIODIVERSITY; CONSERVATION; MANAGEMENT; FRAMEWORK;
D O I
10.1016/j.envsoft.2018.03.031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optimal land use allocation with the intention of ecosystem services provision and biodiversity conservation is one of the key challenges in agricultural management. Optimization techniques have been especially prevalent for solving land use problems; however, there is no guideline supporting the selection of an appropriate method. To enhance the applicability of optimization techniques for real-world case studies, this study provides an overview of optimization methods used for targeting land use decisions in agricultural areas. We explore their relative abilities for the integration of stakeholders and the identification of ecosystem service trade-offs since these are especially pertinent to land use planners. Finally, we provide recommendations for the use of the different optimization methods. For example, scalarization methods (e.g., reference point methods, tabu search) are particularly useful for a priori or interactive stakeholder integration; whereas Pareto-based approaches (e.g., evolutionary algorithms) are appropriate for trade-off analyses and a posteriori stakeholder involvement. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [31] Multi-criteria optimal task allocation at the edge
    Kolomvatsos, Kostas
    Anagnostopoulos, Christos
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 93 : 358 - 372
  • [32] Using spatial multi-criteria decision analysis to develop new and sustainable directions for the future use of agricultural land in Denmark
    Vogdrup-Schmidt, Mathias
    Olsen, Soren Boye
    Dubgaard, Alex
    Kristensen, Inge Toft
    Jorgensen, Leif Bach
    Normander, Bo
    Ege, Christian
    Dalgaard, Tommy
    ECOLOGICAL INDICATORS, 2019, 103 : 34 - 42
  • [33] Soft computing techniques in multi-criteria recommender systems: A comprehensive review
    Anwar, Khalid
    Wasid, Mohammed
    Zafar, Aasim
    Ganaie, M. A.
    Iqbal, Arshad
    APPLIED SOFT COMPUTING, 2025, 169
  • [34] A robust multi-criteria optimization approach
    Kunjur, A
    Krishnamurty, S
    MECHANISM AND MACHINE THEORY, 1997, 32 (07) : 797 - 810
  • [35] Multi-Criteria Direct Aperture Optimization
    Salari, E.
    Unkelbach, J.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [36] Multi-criteria optimization in a methanol process
    Kralj, Anita Kovac
    Glavic, Peter
    APPLIED THERMAL ENGINEERING, 2009, 29 (5-6) : 1043 - 1049
  • [37] An algorithm for Multi-Criteria Optimization in CSPs
    Gavanelli, M
    ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 136 - 140
  • [38] Multi-criteria optimization of a hexapod machine
    Kübler, L
    Henninger, C
    Eberhard, P
    MULTIBODY SYSTEM DYNAMICS, 2005, 14 (3-4) : 225 - 250
  • [39] Multi-Criteria HVAC Control Optimization
    Krinidis, S.
    Tsolakis, A. C.
    Katsolas, I.
    Ioannidis, D.
    Tzovaras, D.
    2018 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2018,
  • [40] Robust Multi-Criteria IMPT Optimization
    Chen, W.
    Unkelbach, J.
    Trofimov, A.
    Madden, T.
    Kooy, H.
    Bortfeld, T.
    Craft, D.
    MEDICAL PHYSICS, 2012, 39 (06) : 3981 - 3981