Geometry of cubic and quartic hypersurfaces over finite fields

被引:0
|
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, TN, Italy
关键词
cubic hypersurface; quartic hypersurface; cubic hypersurface defined over GF(q); Finite Field Nullstellensatz; polar curve; linear subspace; cubic surface; finite projective space;
D O I
10.1006/ffta.2002.0364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Y subset of P-n be a cubic hypersurface defined over GF(q). Here, we study the Finite Field Nullstellensatz of order [q/3] for the set Y(q) of its GF(q)-points, the existence of linear subspaces of PG(n, q) contained in Y(q) and the possibility to join any two points of Y(q) by the union of two lines of PG(n, q) entirely contained in Y(q). We also study the existence of linear subspaces defined over GF(q) for the intersection of Y with s quadrics and for quartic hypersurfaces. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:554 / 569
页数:16
相关论文
共 50 条
  • [41] NONSINGULAR PLANE CUBIC CURVES OVER FINITE-FIELDS
    SCHOOF, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 46 (02) : 183 - 211
  • [42] CUBIC CURVES OVER FINITE-FIELDS - PRELIMINARY REPORT
    GORDON, B
    HOUTEN, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A80 - A80
  • [43] The number of solutions of diagonal cubic equations over finite fields
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [44] Classifying Cubic Surfaces over Finite Fields Using Orbiter
    Betten, Anton
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 55 - 61
  • [45] On the number of zeros of diagonal cubic forms over finite fields
    Hong, Shaofang
    Zhu, Chaoxi
    FORUM MATHEMATICUM, 2021, 33 (03) : 697 - 708
  • [46] On the Geometry of Galois Cubic Fields
    Kochetkov, Yu. Yu.
    MATHEMATICAL NOTES, 2011, 89 (1-2) : 150 - 155
  • [47] On the geometry of galois cubic fields
    Yu. Yu. Kochetkov
    Mathematical Notes, 2011, 89 : 150 - 155
  • [48] Diophantine problems related to cyclic cubic and quartic fields
    Tengely, Szabolcs
    Ulas, Maciej
    JOURNAL OF NUMBER THEORY, 2022, 240 : 656 - 684
  • [49] The enumerative geometry of cubic hypersurfaces: point and line conditions
    Mara Belotti
    Alessandro Danelon
    Claudia Fevola
    Andreas Kretschmer
    Collectanea Mathematica, 2024, 75 : 593 - 627
  • [50] The enumerative geometry of cubic hypersurfaces: point and line conditions
    Belotti, Mara
    Danelon, Alessandro
    Fevola, Claudia
    Kretschmer, Andreas
    COLLECTANEA MATHEMATICA, 2024, 75 (02) : 593 - 627