Geometry of cubic and quartic hypersurfaces over finite fields

被引:0
|
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, TN, Italy
关键词
cubic hypersurface; quartic hypersurface; cubic hypersurface defined over GF(q); Finite Field Nullstellensatz; polar curve; linear subspace; cubic surface; finite projective space;
D O I
10.1006/ffta.2002.0364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Y subset of P-n be a cubic hypersurface defined over GF(q). Here, we study the Finite Field Nullstellensatz of order [q/3] for the set Y(q) of its GF(q)-points, the existence of linear subspaces of PG(n, q) contained in Y(q) and the possibility to join any two points of Y(q) by the union of two lines of PG(n, q) entirely contained in Y(q). We also study the existence of linear subspaces defined over GF(q) for the intersection of Y with s quadrics and for quartic hypersurfaces. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:554 / 569
页数:16
相关论文
共 50 条
  • [1] RATIONAL CURVES ON CUBIC HYPERSURFACES OVER FINITE FIELDS
    Manzateanu, Adelina
    MATHEMATIKA, 2021, 67 (02) : 366 - 387
  • [2] Counting rational points of quartic diagonal hypersurfaces over finite fields
    Hu, Shuangnian
    Li, Yanyan
    Feng, Rongquan
    AIMS MATHEMATICS, 2024, 9 (01): : 2167 - 2180
  • [3] The number of rational points of certain quartic diagonal hypersurfaces over finite fields
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    AIMS MATHEMATICS, 2020, 5 (03): : 2710 - 2731
  • [4] Rational points on cubic, quartic and sextic curves over finite fields
    Oliveira, Jose Alves
    JOURNAL OF NUMBER THEORY, 2021, 224 : 191 - 216
  • [5] CLASSES OF POINTS OF CUBIC HYPERSURFACES DEFINED OVER FINITE-FIELDS
    KANEVSKII, DS
    MATHEMATICAL NOTES, 1976, 20 (1-2) : 625 - 630
  • [6] The Fermat cubic and quartic curves over cyclic fields
    Andrew Bremner
    Ajai Choudhry
    Periodica Mathematica Hungarica, 2020, 80 : 147 - 157
  • [7] The Fermat cubic and quartic curves over cyclic fields
    Bremner, Andrew
    Choudhry, Ajai
    PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (02) : 147 - 157
  • [8] SMOOTHNESS IN PENCILS OF HYPERSURFACES OVER FINITE FIELDS
    Asgarli, Shamil
    Ghioca, Dragos
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 85 - 94
  • [9] Cubic surfaces over finite fields
    Swinnerton-Dyer, Peter
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 385 - 388
  • [10] Transverse linear subspaces to hypersurfaces over finite fields
    Asgarli, Shamil
    Duan, Lian
    Lai, Kuan-Wen
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95